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Abstract

In the case of non-point source pollutions, the regulator is unable to
observe individual emission levels of the �rms, so based on the emission
concentration, it charges uniform environmental tax or gives uniform re-
ward to the �rms. The regulator decides on the environmental standard
and the tax rate. Assuming these quantities given, in optimizing their
pro�ts the �rms select optimal abatement technologies and output levels
simultaneously. A Cournot duopoly is examined in the paper where each
�rm faces a two-dimensional decision variable and selects Nash equilib-
rium strategies. The equilibrium is determined and a comparative analysis
is performed between maximum prices, abatement technologies, equilib-
rium output levels and prices. If the �rms are homogeneous, then ambient
charges can control the emission concentration, and in the case of hetero-
geneous �rms conditions are given for the e¤ectiveness of the ambient
charges.
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1 Introduction

Oligopoly models are among the most frequently discussed topics in the mathe-
matical economics literature. The classical single-product model without prod-
uct di¤erentiation has been extended in many di¤erent directions including
product di¤erentiation, multiproduct models, labor-managed oligopolies, rent-
seeking models among many others (Okuguchi, 1976, Okuguchi and Szidarovszky,
1999). Oligopoly models including environmental issues became a very impor-
tant line of research because of its practical importance and theoretical chal-
lenges. There are several lines of research in this broad �eld. In the case of
point-source pollutants, the regulator knows the individual levels of pollution
for each �rm, so it is able to punish or reward the �rms individually. How-
ever, in the case of nonpoint source pollution, the regulator cannot monitor the
individual emissions with low cost and su¢ cient accuracy. Therefore standard
instruments of environmental policy are not possible. The e¤ects of di¤erent en-
vironmental regulation policies were examined by several researchers including
Downing and White (1986), Jung et al. (1996) and Montero (2002). Segerson
(1988) suggested monitoring ambient concentration of pollutants and Xepa-
padeas (2011) summarized the di¤erent control methods. The regulator �rst
selects an environmental standard, and imposes uniform tax on the pollutants
if the concentration is above this standard, and gives uniform reward if it is
below. The regulator and the �rms have two decision variables. The regulator
decides about the environmental standard and the environmental tax rate. The
�rms can select their abatement technologies and the output volumes. One of
the important questions is to determine how the environmental standard and
the tax rate a¤ect the emission concentration. Ganguli and Raju (2012) ex-
amined Bertrand duopolies and showed that increase in the ambient charges
might increase the emission concentration, which is called the "perverse" e¤ect.
Raju and Ganguli (2013) numerically showed the e¤ectiveness of the ambient
charge in Cournot duopolies. This result was shown analytically by Sato (2017).
The n-�rm generalization of this model was investigated by Matsumoto et al.
(2018a) in a dynamic framework, and the corresponding Bertrand model was
examined by Ishikawa et al. (2019) showing that the sign of the e¤ect depends
on the number of �rms, the degree of substitutability, and the heterogeneity of
the abatement technologies of the �rms. Matsumoto et al. (2018b) considered a
one-stage and a two-stage Bertrand duopoly and a three-stage Cournot oligopoly
was introduced and examined by Matsumoto et al. (2020), where in the �rst
stage the regulator determines the tax rate of the ambient charge to maximize
social welfare, in the second stage each �rm selects optimal abatement technol-
ogy and in the third stage the �rms decide on their optimal output levels. In
this paper a Cournot oligopoly is considered. The ambient charge rate and the
environmental standard are considered given and each �rm maximizes its pro�t
as a bivariable function with decision variables being the ambient technology
and production level. The pro�t of each �rm includes the revenue, the produc-
tion cost, the ambient charge (or reward) and the technology installment cost.
The equilibrium will be determined and the e¤ectiveness of the ambient charge
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is shown in the symmetric case, and in the non-symmetric case conditions are
given for the e¤ectiveness.
The paper is developed as follows. In Section 2, the equilibrium is determined

and shown how the production cost a¤ects the optimal ambient technology and
output level, as well as the price. Section 3 considers the symmetric case,
when the �rms are homogeneous and the e¤ectiveness of the ambient charges
on the emission concentration is veri�ed. The non-symmetric case is analyzed
in Section 4 with conditions for the e¤ectiveness of the ambient charges. Section
5 o¤ers concluding remarks and o¤ers further research directions.

2 Basic Model

Let us consider a Cournot duopoly market in which �rm i produces a di¤eren-
tiated output qi with a linear price function,

pi = �i � qi � 
qj (1)

where �i > 0 is the maximum price and 0 � 
 � 1 denotes the degree of product
di¤erentiation; two goods are substitutes if 0 < 
 < 1, homogeneous if 
 = 1
and independent if 
 = 0. Each �rm produces output as well as emits pollution.
It is assumed that one unit of production emits one unit of pollution. Let �i
denote the pollution abatement technology of �rm i and 0 � �i � 1 with a
pollution-free technology if �i = 0 and a fully-discharged technology if �i = 1.
If �rm i has the marginal cost ci and the belief that the competitor output will
remain unchanged, then its pro�t is

�i(qi; �i) = (�i � qi � 
qj) qi � ciqi � (1� �i)2 � �(�iqi + �jqj � �E) (2)

where �E is the ambient standard by a regulator, � is the ambient tax rate and
(1 � �i)2 is the installation cost of technology. To have positive pro�t in case
of no pollutions, �i > ci is assumed. The rate � is measured in some monetary
unit per emission. It is positive and can be larger than unity (e.g., dollar/ton,
yen/kg, etc). However, we assume that � < 1 under some normalization. We
state these assumptions more formally:

Assumption 1: (1) 0 < 
 < 1; 0 < � < 1; (2) �k > ck for k = i; j:

For �rm i; both qi and �i are strategic variables and the �rst-order conditions
for an interior maximum are obtained by di¤erentiating (2) with respect to qi
and �i,

@�i
@qi

= �i � 2qi � 
qj � ci � ��i = 0 (3)

and
@�i
@�i

= ��qi + 2(1� �i) = 0: (4)
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The second-order conditions are certainly satis�ed since �i(qi; �i) is strictly
concave.1 From (4), the optimum output is determined as

qi =
2(1� �i)

�
(5)

which is positive if �i < 1 and zero if �i = 1. From (1) and (3) we see that the
price is set to sell its optimum output,

pi = qi + ci + ��i (6)

which is also positive if �i � 1. Once the optimal technology of �rm i; ��i ; is
determined, then its optimal output and price are determined through equations
(5) and (6).
The optimal �i is next determined. Substituting (5) into (3) yields the

following form of the �rst-order condition for �rm i�s optimal technology,

�i �
4(1� �i)

�
�
2
(1� �j)

�
� ci � ��i = 0

or
�i
�
4� �2

�
+ 2
�j = 4 + 2
 + (ci � �i) �: (7)

In the same way, the corresponding �rst-order condition for �rm j is obtained
by interchanging i and j in equation (7),

�j
�
4� �2

�
+ 2
�i = 4 + 2
 + (cj � �j) �: (8)

Let �i = �i � ci and �j = �j � cj ; both of which are positive by Assumption
1(2). Solving equations (7) and (8) simultaneously yields the optimal abatement
technologies

��i =
(4� �2 � 2
)(4 + 2
) +

�
2
�j � (4� �2)�i

�
�

(4� �2)2 � 4
2
(9)

and

��j =
(4� �2 � 2
)(4 + 2
) +

�
2
�i � (4� �2)�j

�
�

(4� �2)2 � 4
2
(10)

where the denominators of (9) and (10) are positive due to 0 < � < 1 and
0 < 
 < 1,

(4� �2)2 � 4
2 � 9� 4 > 0:
Hence, the feasible conditions 0 � ��i � 1 are spelled out as follows by arranging
the numerator of (9),

f1(�i) � �j � f2(�i) (11)

1The Jacobian of �i(qi; �i) with respect to qi and �i is

J =

�
�2 ��
�� �2

�
with minors � 2 < 0 and 4� �2 > 0;

so J is negative de�nite, therefore �i(qi; �i) is strictly concave as a bivariable function.
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where

f1(�i) =
4� �2

2

�i �

(4� �2 � 2
)(2 + 
)

�

(12)

and

f2(�i) =
4� �2

2

�i �

(4� �2 � 2
)�
2


: (13)

Equations (12) and (13) indicate that the upper and lower bounds of the feasible
region for 0 � ��i � 1 are parallel lines in the (�i; �j) plane, having a positive
slope

4� �2

2

� 3

2

and negative intercepts,

0 > � (4� �
2 � 2
)�
2


> � (4� �
2 � 2
)(4 + 2
)
2
�

:

Due to the symmetry between ��i and �
�
j ; the feasible conditions 0 � ��j � 1

are obtained by interchanging i and j of relation (11),

f1(�j) � �i � f2(�j)

or
f�12 (�i) � �j � f�11 (�i) (14)

where

f�11 (�i) =
2


4� �2
�i +

(4� �2 � 2
)(4 + 2
)�
4� �2

�
�

(15)

and

f�12 (�i) =
2


4� �2
�i +

(4� �2 � 2
)�
4� �2

: (16)

Similarly, (15) and (16) indicate that the upper and lower bounds of the feasible
region for 0 � ��j � 1 are parallel lines with a positive slope,
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4� �2
� 2

3

and positive intercepts

0 <
(4� �2 � 2
)�

4� �2
<
(4� �2 � 2
)(4 + 2
)

(4� �2)�
:

These results are summarized as follows:

Theorem 1 The optimal technologies ��i and �
�
j are nonnegative and not greater

than unity for �i and �j if

f1(�i) � �j � f2(�i) and f�12 (�i) � �j � f�11 (�i):
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The pairs (�i; �j) satisfying both conditions (11) and (14) are illustrated
in Figure 1 with 
 = 0:6 and � = 0:8.2 The two dotted red lines describe
�j = f1(�i) and �j = f2(�i) while the two dotted blue lines describe �j =
f�11 (�i) and �j = f

�1
2 (�i). Conditions (11) and (14) are simultaneously satis�ed

in the yellow parallelogram that will be called the feasible region and is given
as

R = f(�i; �j) j f2(�i) � �j � f1(�i) and f2(�j) � �i � f1(�j)g:

It is to be noticed that the second condition can be written as f�11 (�i) � �j �
f�12 (�i): �

M (�) and �m(�) in Figure 1 denote the maximum and minimum
values of � and are given as

�M (�) =
4 + 2


�
and �m(�) = �:

As will be seen later, the diagonal between two points
�
�M (�); �M (�)

�
and

(�m(�); �m(�)) is the feasible interval when the �rms are homogeneous in the
sense that �i = �j .

Figure 1. Feasible region for
0 � ��i ; ��j � 1

If the maximum prices are the same (i.e., �i = �j), then subtracting (10)
from (9) gives

��i � ��j =
�

4� �2 � 2

(ci � cj) (17)

that implies
ci Q cj =) ��i Q ��j :

2Any other combinations for 
 and � generate essentially the same shape.
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Through equations (5) and (6), we have

��i Q ��j =) q�i R q�j =) p�i Q p�j :

We summarize magnitude relations among the optimal decisions as follows:

Theorem 2 If �i = �j holds in addition to Assumption 1, then a �rm with a
lower production cost chooses a more e¢ cient abatement technology, produces
more output and charges less price.

3 Homogenous Firms

To examine e¤ects caused by a change in the ambient charge on output and
the total pollution, we start with the simpli�ed case in which the following
assumption is imposed:

Assumption 2. �i = �j = � and ci = cj = c:

Under Assumption 2, the �rms become homogenous in a sense that the price
and the cost functions are the same. Their optimal decisions are identical. In
particular, Assumption 2 implies �i = �j = � for which (9) and (10) give
identical optimal abetment technology,

��i = �
�
j = �

� =
�
�
�M (�)� �

�
4� �2 + 2


(18)

from which

�� � 1 = �(�m(�)� �)
4� �2 + 2


:

Since the denominators are positive, we have the following as Corollary of The-
orem 1:

Corollary 1 Under Assumptions 1 and 2, the optimal technology satis�es 0 <
�� < 1 if an only if �m(�) < � < �M (�):

Optimal technology �� is then substituted into (5) to have the optimal out-
put,

q�i = q
�
j = q

� =
2(1� ��)

�
=
2 (� � �m(�))
4� �2 + 2


> 0 if �� < 1: (19)

The optimal price is then determined via (6) as

p�i = p
�
j = p

� = q� + c+ ��� > 0:

Notice that Corollary 1 is visualized in Figure 2 in which 0 � �� � 1 in the
yellow region and the loci of � = �M (�) and � = �m(�) are the upper and lower
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boundaries.3

Figure 2. Region of (�; �) for 0 � �� � 1
when 
 = 0:6 and � = 0:8

The total amount of production pollution is the sum of the individual pol-
lutiona and given by

E�
�
= ��i q

�
i + �

�
jq
�
j

�
= 2��q�:

Di¤erentiating ��q� with respect to � yields, after arranging the terms,

@ (��q�)

@�
= �

2
�
(4 + 2
 + 3�2)�2 � 2�(12 + 6
 + �2)� + 2(2 + 
)(2 + 
 + 3�2)

�
(4 + 2
 � �2)3

:

(20)
The denominator is positive. Since the numerator is quadratic in �; equating it
to zero and solving for � yield two solutions

�� =
�(�2 + 6
 + 12)�

q
�
�
4� �2 + 2


�3
4 + 2
 + 3�2

:

Since the discriminant is negative, the numerator of (20) is positive. Therefore,

@E�

@�
= 2

@ (��q�)

@�
< 0: (21)

The direction of inequality implies that increasing the ambient charge rate de-
creases the total amount of pollution. This result is summarized as follows:

3We will refer to the red negative- and green positive-sloping curves inside the yellow region
below.
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Theorem 3 If the �rms are homogenous and �m(�) � � � �M (�), then chang-
ing the ambient charge tax rate can control the concentration of the NPS pollu-
tion,

@E�

@�
< 0:

We consider why the ambient charge can be e¤ective in controlling pollution.
Di¤erentiating (18) and (19) with respect to � gives

@��

@�
=
4 + 2
 + �2

4 + 2
 � �2
�
2�(4 + 2
)

4 + 2
 + �2
� �

�
(22)

and
@q�

@�
=

4��
4 + 2
 � �2

�2 �� � 4 + 2
 + �22�

�
: (23)

Accordingly, two new functions are introduced,

�0(�) =
2�(4 + 2
)

4 + 2
 + �2
and �1(�) =

4 + 2
 + �2

2�
:

The � = �0(�) curve corresponds to the positive-sloping green curve located
just above the � = �m(t) line in Figure 2 and the following relations hold,

@��

@�
R 0 according to � Q �0(�):

Thus in the vertically-striped yellow region surrounded by the two curves, � =
�m(�) and � = �0(�) in Figure 2, the following inequality holds,

@��

@�
> 0:

Similarly the � = �1(�) curve corresponds to the negative-sloping red curve
located just below the � = �M (�) curve and the following relations hold,

@q�

@�
R 0 according to � R �1(�):

In the horizontally-striped yellow region surrounded by these two curves, � =
�M (�) and � = �1(�), we have

@q�

@�
> 0:

Summarizing the results, we can divide the yellow region into three subregions
in which

(i) �m(�) � � � �0(�);
@q�

@�
< 0 and

@��

@�
� 0;

(ii) �0(�) < � < �1(�);
@q�

@�
< 0 and

@��

@�
< 0;

(iii) �1(�) � � � �M (�);
@q�

@�
� 0 and @�

�

@�
< 0:

(24)
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If the change in the ambient tax rate has an unfavorable e¤ect on the variables,
we call it a perverse e¤ect. Although the regulator cannot observe the individual
�rm�s reactions to a change in �; their optimal responses are summarized as
follows:

Theorem 4 The ambient tax rate has a perverse e¤ect on the optimal technol-
ogy decision if � is small enough in the sense that �m(�) � � � �0(�) and on the
optimal output decision if � is large enough in the sense of �1(�) � � � �M (�)
whereas it has a normal e¤ect on both variables if � takes a normal value in the
sense of �0(�) < � < �1(�):

We now consider the magnitude of these normal and perverse e¤ects. Dif-
ferentiating E� = 2��q� with respect to � and arranging the terms present

@E�

@�
= 2

E�

�
("� + "q)

where "� and "q denote the elasticity of technology and the elasticity of output
for the ambient charge tax and are de�ned, respectively, by

"� =
�

��
@��

@�
and "q =

�

q�
@q�

@�
:

Since � can have a perverse e¤ect as discussed in Theorem 4, the sign of @E�=@�
depends on the relative magnitudes between "� and "q in absolute values. In
case (ii) of (24) or in the non-striped yellow region of Figure 2, both elasticities
are negative, implying that @E�=@� < 0. On the other hand, the sign of @E�=@�
in case (i) or in case (iii) is ambiguous since the two elasticities are of opposite
sign. However, Theorem 3 indicates @E�=@� < 0 in both regions. Hence,
in case (i) or in the vertically-striped yellow region, the negative elasticity of
the optimal output dominates the positive elasticity of ��: In case (iii) or in
the horizontally-striped yellow region, the negative elasticity of the optimal
technology dominates the positive elasticity of q�: Theorem 3 demonstrates the
e¤ectiveness of the ambient charge on the total concentration. We reach the
same result through a di¤erent route.

Theorem 5 The ambient charge can control the NPS pollution ��q� emitted
by an individual �rm since the normal e¤ect dominates the perverse e¤ect. In
consequence,

@E�

@�
= 2

@ (��q�)

@�
< 0:
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4 Heterogeneous Firms

We now consider the ambient charge e¤ect when the �rms are heterogeneous.
The total amount of pollution is

E� = E�i + E
�
j where E

�
k = �

�
kq
�
k for k = i; j

and its �-derivative is

@E�

@�
=
@ (��i q

�
i )

@�
+
@
�
��jq

�
j

�
@�

(25)

where
@ (��kq

�
k)

@�
=
E�k
�

�
�

��k

@��k
@�

+
�

q�k

@q�k
@�

�
: (26)

The following transformation is obtained by applying equation (5) and its �-
derivative,

�

q�k

@q�k
@�

= �
�

��k
1� ��k

�

��k

@��k
@�

+ 1

�
that is substituted into (26) to obtain

@ (��kq
�
k)

@�
=
E�k
�

�
1� 2��k
1� ��k

�

��k

@��k
@�

� 1
�
: (27)

For notational convenience, we focus on the pollution amount emitted by
�rm i for a while. Using the functions f1(�i) and f2(�i) de�ned in (12) and
(13), we can rewrite equation (9), the optimal technology selected by �rm i, as

��i =
2
�

�
�j � f1(�i)

�
(4� �2)2 � 4
2

with which, we have

1� ��i =
�2
�

�
�j � f2(�i)

�
(4� �2)2 � 4
2

and

1� 2��i =
�4
�

�
�j � g1(�i)

�
(4� �2)2 � 4
2

where

g1(�i) =
4� �2

2

�i �

�
4� �2 � 2


� �
4 + �2 + 2


�
4
�

:

Di¤erentiating ��i with respect to � and arranging the terms present

@��i
@�

=
2

�
(4� �2)(4 + 3�2)� 4
2

� �
�j � g2(�i)

��
(4� �2)2 � 4
2

�2
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where

g2(�i) =
(4� �2)2(4 + �2)� 4
2(4� 3�2)
2

�
(4� �2)(4 + 3�2)� 4
2

� �i �
2�(2 + 
)

�
4� �2 � 2


�2


�
(4� �2)(4 + 3�2)� 4
2

� :
Using these terms, we have

1� 2��i
1� ��i

�

��i

@��i
@�

=
A

B

�
�j � g1(�i)

� �
�j � g2(�i)

��
�j � f1(�i)

� �
�j � f2(�i)

� (28)

with
A = 2

�
(4� �2)(4 + 3�2)� 4
2

�
> 0;

and
B = (4� �2)2 � 4
2 > 0:

Hence, the right hand side of equation (27) for �rm i can be written as

@ (��i q
�
i )

@�
=
E�k
�

 
A

B

�
�j � g1(�i)

� �
�j � g2(�i)

��
�j � f1(�i)

� �
�j � f2(�i)

� � 1! : (29)

Figure 3(A) presents the division of the feasible region given in Figure 1. The
loci of �j = f2 (�i) and �j = f1(�i) are the left hand and right hand boundaries
and the loci of �i = f1(�j) and �i = f2(�j) are the lower and upper boundaries.
Two loci of �j = g1(�i) and �j = g2(�i) divide the feasible region for �rm i into
three regions as shown in Figure 3(A) where 0 < dg2(�i)=d�i < dg1(�i)=d�i.
The following inequalities hold in the divided subregions:

R1i = f(�i; �j) 2 R j �j > g2(�i) and �j > g1(�i)g;
R2i = f(�i; �j) 2 R j �j < g2(�i) and �j > g1(�i)g;
R3i = f(�i; �j) 2 R j �j < g2(�i) and �j < g1(�i)g:

It is con�rmed that f1(�i) � �j � f2(�i) : Consequently, we have

�
�j � g1(�i)

� �
�j � g2(�i)

��
�j � f1(�i)

� �
�j � f2(�i)

�
8>><>>:
< 0 for (�i; �j) 2 R1i;

> 0 for (�i; �j) 2 R2i;

< 0 for (�i; �j) 2 R3i;

(30)

Therefore, equation (29) and relation (30) imply the following:

Lemma 1 For the pair of (�i; �j) in region R1i [ R3i; the ambient charge tax
rate is e¤ective in reducing �rm i�s pollution,

@ (��i q
�
i )

@�
< 0:
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In region R2i, since f2(�i) > g2(�i) > g1(�i) > f1(�i); multiplying by �1
and adding �j to each term gives the following order,

�j � f2(�i) < �j � g2(�i) < 0 < �j � g1(�i) < �j � f1(�i)

which then implies that �
�j � g1(�i)

� �
�j � g2(�i)

��
�j � f1(�i)

� �
�j � f2(�i)

� < 1
as

0 <
�j � g2(�i)
�j � f2(�i)

< 1 and 0 <
�j � g1(�i)
�j � f1(�i)

< 1:

On the other hand,

A�B = 4(4� 
2) + �2(24� 7�2) � 12 for 0 � 
 � 1 and 0 � � � 1:

Hence A=B > 1 implying that the sign of @ (��i q
�
i ) =@� is ambiguous in region

R2i. However, it is possible to check the sign in a di¤erent way. Let us denote
the parenthesized factor of (29) by

'i
�
�i; �j

�
=
A

B

�
�j � g1(�i)

� �
�j � g2(�i)

��
�j � f1(�i)

� �
�j � f2(�i)

� � 1: (31)

As can be seen in Figure 3(B) in which 
 = 0:6 and � = 0:8, the maximum
value of 'i

�
�i; �j

�
is denoted as the red point and realized by maximizers, �mi

and �mj ; satisfying �
m
j = f

�1
2 (�mi ). Point (�

m
i ; �

m
j ;�1) is denoted as the black

point. We numerically determine those critical values. To this end, we �rst
substitute �j = f

�1
2 (�i) into 'i

�
�i; �j

�
;4

�i(�i) = 'i
�
�i; f

�1
2 (�i)

�
=
15608� 15426�i + 4805�2i
513 (5� �i) (4� 5�i)

:

Then di¤erentiating �i(�i) with respect to �i, equating it to zero and solving
for �i yield

�mi ' 1:84; �mj
�
= f�12 (�mi )

�
' 1:17 and 'i

�
�mi ; �

m
j

�
' �0:416:

Here 'i
�
�mi ; �

m
j

�
is the maximum value of 'i

�
�i; �j

�
in region R2i in which

point
�
�mi ; �

m
j

�
is denoted by the black point on the �j = f�12 (�i) locus. Re-

peating the same procedure under the conditions of 0 < 
 < 1 and 0 < � < 1; we
have the following result:

Lemma 2 Given Assumption 1, the maximum value of @ (��i q
�
i ) =@� is negative

for any pair of (�i; �j) in region R2i.

4The calculations are done with Mathematica, version 12.1.
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Proof. See the Appendix.
Lemmas 1 and 2 imply the following;

@ (��i q
�
i )

@�
< 0 for (�i; �j) 2 R. (32)

(A) The feasible region (B) Graph of @(�
�
i q

�
i )

@�

Figure 3.
@ (��i q

�
i )

@�
< 0 for �rm i under 
 = 0:6 and � = 0:8

For �rm j, we repeat the same procedure and can show that �rm j�s pollu-
tion amount is negatively related with the ambient tax rate. Indeed, following
the de�nition of 'i

�
�i; �j

�
in equation (31), we can de�ne the corresponding

function for �rm j by interchanging �i with �j ;

'j
�
�i; �j

�
=
1� 2��j
1� ��j

�

��j

@��j
@�

� 1 = A

B

�
�i � g1(�j)

� �
�i � g2(�j)

��
�i � f1(�j)

� �
�i � f2(�j)

� � 1
and substituting �i = f2(�j) into 'j

�
�i; �j

�
gives

�j(�j) = 'j
�
f2(�j); �j

�
The feasible region is the same and is di¤erently divided into three subregions
by the two loci of �i = g1(�j) and �i = g2(�j) as

R1j = f(�i; �j) 2 R j �i > g2(�j) and �i > g1(�j)g;
R2j = f(�i; �j) 2 R j �i < g2(�j) and �i > g1(�j)g;
R3j = f(�i; �j) 2 R j �i < g2(�j) and �i < g1(�j)g:

Due to its de�nition, f2(�j) � �i � f1(�j) holds in region R. Hence, applying
Lemmas 1 and 2 leads to the following for �rm j;

@
�
��jq

�
j

�
@�

< 0 for (�i; �j) 2 R. (33)
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Figure 4 describes the yellow half-cylinder of 'i
�
�i; �j

�
and the blue half-

cylinder of 'j
�
�i; �j

�
for (�i; �j) 2 R: Both are restricted to the gray colored

region that is the feasible region of (�i; �j) and corresponds to the yellow paral-
lelogram in Figure 1 and Figure 3(A). Notice that the highest value is negative.

Figure 4. The sign of @E�=@� when 
 = 0:6
and � = 0:8

From (32) and (33), we arrive at the following result for the heterogeneous
�rms:

Theorem 6 Given Assumption 1, the ambient charge can control the total
amount of NPS pollutions when the �rms are heterogeneous,

@E�

@�
=
@ (��i q

�
i )

@�
+
@
�
��jq

�
j

�
@�

< 0:

5 Concluding Remarks

In this paper Cournot duopolies with product di¤erentiation are considered,
when the pro�t of each �rm includes revenue, production cost, ambient envi-
ronmental tax (or reward) and technology investment cost. The action of the
regulator is assumed given, and the �rms select their ambient technologies and
output levels. A two-person game is therefore de�ned, when the players have
two-dimensional strategies. First the Nash equilibrium is determined and com-
parative study is performed between maximal prices, abatement technologies,
output levels and prices at the equilibrium levels. In the case of homogeneous
�rms the e¤ectiveness of the ambient charges is proved on the emission concen-
tration. If the �rms are heterogeneous, then conditions are derived for e¤ective-
ness. The research reported in this paper can be continued and extended into

15



several directions. In the paper we considered linear price and cost functions as
well as a simple quadratic technology investment cost. More complex, mainly
nonlinear function types might make the results more interesting. Oligopolies
with n �rms can be modeled as an (n+1)-player game, when the �rms and the
regulator are the players. Its equilibrium analysis might o¤er some interesting
results. We can also introduce the dynamic extensions of these models with and
without time delays.
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Appendix

In this Appendix, Lemma 2 is proved under the conditions of 0 < 
 < 1 and
0 < � < 1 (that is, Assumption 1(1)). We start with restating equation (31),

'i
�
�i; �j

�
=
A

B

�
�j � g1(�i)

� �
�j � g2(�i)

��
�j � f1(�i)

� �
�j � f2(�i)

� � 1:
Substituting �j = f

�1
2 (�i) into 'i

�
�i; �j

�
gives

�i(�i) = 'i
�
�i; f

�1
2 (�i)

�
= � a�2i + b�i + c

(� � �i) (4=� � �i)
h
(4� �)2 � 4
2

i (A-1)

where
a =

�
4� �2

�
(4 + 3�)� 4
2 > 0;

b = ��
�
(4� 
2)

�
12� 6
 + �2

�
� 8
2

�
< 0;

c = 2
�
4� �2

� �
4(2� 
) + �2(6� 
)

�
� 4
2�2 > 0:

The discriminant of the quadratic polynomial a�2i + b�i + c is negative,

D = 4(4� �2)
�
8(2� 
)
2 � (4� �2)2(4� 2
 � �2)

�
< 0;

which means that the numerator of (A-1) is positive. Since (4� �)2 � 4
2 > 0
for 0 < 
 < 1 and 0 < � < 1, we have

�i(�i) < 0 if � < �i <
4

�
:

To �nd maximizers for �i(�i), we solve @�i=@�i = 0 for �i and obtain two
solutions,

��i =
2
�

�
4 + �2 � 2


�
�
p
2(4� �2)

q
(2� 
)

�
(4� �2)2 � 4
2

��
(4� �2)2 � 4
2

�
+ 4
�2

where the denominator is positive. Each term in the numerator of ��i is positive.
Factorizing the di¤erence of these squares gives

�2
�
4(2� 
)

�
2� �2 + 


�
+ �4

� ��
32� 16(
 + �2) +

�
2
2 + (2� 
)�2

�
�2
��
< 0

as the �rst and second bracketed terms are positive. Hence ��i < 0 and is
eliminated from further considerations. On the other hand, �+i is de�nitely
positive and can be con�rmed to satisfy the negativity conditions,

� < �+i <
4

�
: (A-2)
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In particular,

�+i � � =
(4� �2)

p
4� �2 � 2


�p
2
q
(2� 
)(4� �2 + 2
)� �

p
4� �2 � 2


�
�
(4� �2)2 � 4
2

�
+ 4
�2

Squaring each term in the brackets of the numerator and making subtraction
present

2(2� 
)(4� �2 + 2
)� �2
�
4� �2 � 2


�
= 4(2� 
)(2� �2 + 
) > 0

that implies the �rst inequality of (A-2). Next,

�+i �
4

�
=

(4� �2)
q
(2� 
)

�
4� �2 + 2


� �p
2�
q
(4� �2 � 2
)�

q
(2� 
)

�
4� �2 + 2


��
�[(4� �2)2 � 4
2 + 4
�]

where the denominator is positive and each term in the numerator is also posi-
tive. The di¤erence of the squares of the two terms inside the brackets yields

�2
�
�4 + 4(2� 
)(2� �2 + 
)

�
< 0

which implies the second inequality of (A-2). Hence, the larger solution �+i satis-
�es the negativity conditions and makes the maximum value of �i(�i) negative.
Let us denote �+i by �

m
i ; then the proof of Lemma 2 is completed.
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