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Effects of core-electrons for the electron affinity  

of rubidium atom

Abstract

The electron affinity of rubidium atom (Rb) given from multireference singly and doubly excited 

configuration interaction (MRSDCI) calculations considering excitations from core-electrons 

4s24p6 is presented. The resulting electron affinity 0.4861 eV is in excellent agreement with 

the experimental value 0.485916 eV. The electron affinity obtained from our previous MRSDCI 

calculations which treated only 5s-valence electrons is 0.475 eV. The core-electron effects are shown 

to be important in the calculation of the electron affinity of Rb.

1. INTRODUCTION

The accurate calculation of the electron affinity of atoms is very important for the theoretical 

research of energetical stability of positronium-atom complexes. The positronium (Ps) binding 

energy (EB) of the complex PsA is written as EB = EEA + EPI + EPs, where EEA, EPI, and EPs are 

respectively the electron affinity of atom A, the positron ionization energy of PsA, and the energy of 

Ps (–0.25 hartree). To analyze accuracy of the Ps binding energies, the accurate electron affinity of 

atom is required.

Our previous work1 has obtained the Ps binding energy of positronium-alkali atom complexes, 

PsLi, PsNa, PsK, and PsRb, from the multireference singly and doubly excited configuration 

interaction (MRSDCI) calculations considering only the valence shells ns21s+
1. The electron affinities 

of Li, Na, K, and Rb have been also calculated considering only ns valence-electrons. The obtained 

electron affinities of Li, Na, and K have errors of ~0.005 eV compared to the experimental values2, 

which is in good agreement with the experimental values except for Rb. The error for the electron 

affinity of Rb is 0.011 eV. This difference significantly affects the calculation of the Ps binding energy 

Saito Shiro L.



12 CHUKYO UNIVERSITY Faculty of Liberal Arts and Sciences 2024 Vol. 4 No. 2

of PsRb because its Ps binding energy is 0.093 eV. The error in the electron affinity of Rb may be 

due to the neglect of the relativistic effect and the core-electron effects, i.e., core-core and core-

valence electron correlation effects. Calculations incorporating relativistic effects were performed 

with the third order Douglas-Kroll method3 and yielded almost the same results as the non-relativistic 

calculations. Therefore, the core-electron effects are important for the calculation of the electron 

affinity of Rb. The calculation of PsRb must also include the core-electron effects.

In this work, we performed MRSDCI calculations with the core-electron effects for Rb and Rb– and 

obtained the electron affinity of Rb. Namely, excitations from 4s24p65s1 for Rb and 4s24p65s2 for Rb– 

were considered. Computational details are given in the next section. Section 3 shows and discusses 

the results.

2. COMPUTATIONAL ASPECT

In this work, all the atomic orbitals were expanded with B-splines4,5. The B-spline set is one of 

piecewise polynomials and is very flexible. Hence, all atomic orbitals of each system can be expanded 

using a common B-spline set regardless of the symmetry of the atomic orbitals. The B-spline set used 

consists of N Kth-order B-splines on a knot sequence defined on an interval [0, R], where is in bohr. 

A knot sequence was used with endpoints of K-fold multiplicity:

0, R1, R1 (1+β), R1 (1 + β + β2), ⋯, R,� (1)

where R1 is the initial interval and β  is the parameter characterizing the distribution of the knots. 

Here β  is decided to satisfy the following condition:

R = R1 (1 + β + β2 + ⋯ + β N – K + 2),    (β ≥ 1).� (2)

Since the first and last terms of the B-splines with K-fold multiplicity are nonzero at r = 0 and r = R, 

respectively, the N-term B-spline set was constructed omitting them. This work adopted N = 40, 

R = 60, K = 9. β  was optimized by Hartree-Fock (HF) calculations. The parameters are the same as 

those used in the calculations dealing only with valence electrons1.

Our MRSDCI calculations used the natural orbitals (NOs) with angular momentum λ  up to 8 (i.e. 

l-symmetry). The NOs were generated by a series of MRSDCI calculations with reference spaces 

consisting of principal configurations of a configuration interaction wave function (a ‘minimal 

reference space’). The minimal reference configurations of Rb and Rb– are listed in Table 1.

Let us explain construction of NOs. First, MRSDCI calculations were carried out with the HF 
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orbitals, to obtain spdf-NOs. Subsequently, g-NOs were generated by MRSDCI calculations with the 

spdf-NOs. The NOs with higher λ  than g were generated in the same way, step by step. Those NOs 

whose occupation number was less than 10–6 were truncated at each step.

The full configuration interaction (FCI) energy limits and the energy contributions to the total 

energies from higher angular momentum orbitals (the higher λ  effect) were estimated. To this end, a 

further series of MRSDCI calculations was carried out using obtained NOs, increasing the reference 

configurations which were selected for the largest weight in the previous MRSDCI wave function. 

Those calculations were continued until wref ≈ 0.99, where wref is the weight of reference space. The 

reference space finally extended is referred to as a ‘maximum reference space’.

The HF calculations with the B-spline set were carried out using our atomic self-consistent field 

program code based on the algorithm of Roothaan and Bagus. 6–8 All CI calculations were performed 

by the program ATOMCI 9,10.

3. RESULTS AND DISCUSSION

Table 2 summarizes the results of the MRSDCI calculations with the minimal reference space and 

the maximum reference space for Rb and Rb–. The loses of the MRSDCI energies due to the NO 

truncation (ε) are very small: the difference of ε  for Rb and Rb– is 0.000013 hartree (~0.00035 eV). ε  

may affect the electron affinity. Assuming additivity of energy, ε  was added to the MRSDCI energy.

The FCI wave function is the MRSDCI wave function with wref = 1. The FCI limits of the MRSDCI 

Table 1 Minimal reference configurations of Rb and Rb–

Rb Rb–

4s24p65s1 4s24p65s2

4s24p44d25s1 4s24p66s2

4s24p65p2

4s24p44d25s2

Table 2 �Results of MRSDCI with minimal and maximum reference spaces. NCI, wref, ECI, andε respectively 

denote the dimension of the MRSDCI wave function, weight of reference space, total energy, and 

loss of total energy due to the NO truncation procedure

Reference space NCI wref ECI (hartree) ε  (hartree)

Rb minimal 39,798 0.965306 –2938.604332 –0.000029

maximum 561,515 0.990258 –2938.609003

Rb– minimal 41,993 0.959980 –2938.619986 –0.000016

maximum 2,435,727 0.987818 –2938.626857
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energies (ECI) were estimated by extrapolating ECI to wref = 1. To this end, the convergence pattern 

of ECI, ECI+Q, and EAV was analyzed with respect to wref. ECI+Q is ECI plus the Davidson correction11. 

EAV is the average of ECI and ECI +Q. Although EAV has no physical meaning, it is useful for this 

extrapolation. Fig. 1 shows the convergence pattern of ECI, ECI+Q, and EAV for Rb and Rb– against 

wref. Extrapolating ECI to wref = 1 produced the FCI limits –2938.60930 hartree and –2938.62717 

hartree for Rb and Rb–, respectively.

The higher λ  effect for the total energies was estimated by extrapolating the energy contributions 

due to the respective λ-NOs to λ → ∞. To treat with the same accuracy, we extrapolated the total 

energies to λ → ∞ using MRSDCI energies with wref ≈ 0.99. Fig. 2 shows the energy contributions 

from the respective λ-NOs (ΔEλ), on a log-log scale. The energy contribution converges linearly. 

Hence, ΔEλ was fitted by the following relation with two parameters α  and β  :

–∆Eλ = αλ –β.� (3)

The energy contribution from the NOs having λ  greater than 8 (Eλ >8) was estimated as 

Eλ >8 =      Δ Eλ.� (4)

We finally obtained the FCI energy limits including the higher λ  effect. The energy contribution 

∞

�
λ  = 9

Fig. 1 Convergence of CI energies for Rb and Rb– with respect to the weight of the reference space
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due to the higher λ  effect is –0.000841 hartree and –0.000839 hartree for Rb and Rb–, respectively. 

The difference of the energy contribution is very small value –0.000002 hartree (–0.000054 eV). 

Therefore, the higher λ  effect can be neglected. 

Table 3 summarizes the electron affinity of Rb with our previous and the experimental values. Our 

final electron affinity of Rb is 0.4861 eV, which is an improvement over our previous calculation result 

that treated only valence electrons. The difference from the experimental value is 0.0002 eV, which 

is in excellent agreement with the experimental value. 

Table 4 lists the weights of the principal configurations in the MRSDCI wave function with the 

maximum reference space. The main configuration of the Rb wave function is 4s24p65s1, and the 

weights of the 4p2→4d2, 4s14p1→4d14f1, and 4p15s1→4d15p1 excited configurations are large. For 

Fig. 2 Contributions to the total energies from the respective λ orbitals

Table 3 Electron affinity (EA) of Rb

Method Reference EA (eV)

MRSDCI This work 0.4858

MRSDCI + ε This work 0.4855

FCI limit This work 0.4862

FCI limit + higher λ This work 0.4861

FCI limit + higher λ Ref. 1 0.475

Experiment Ref. 2 0.485916
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Rb–, the weights of the 5s2 → 5p2, 6s2 excited configurations are large, followed by the weights of 

the 4p2→4d2 and 4s14p1→4d14f1 excited configurations as Rb. The core-electron effects are large 

for both and are non-negligible. Therefore, the core-electron effects must be considered when 

calculating the electron affinity of Rb.

In summary, the calculation of the electron affinity of Rb should incorporate the core-electron 

effects. Therefore, MRSDCI calculations must be performed for PsRb as well, incorporating the core-

electron effects.
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Table 4 Weights of principal configurations of MRSDCI wave function for Rb and Rb–

Rb Rb–

weight configuration weight configuration

0.923 4s24p65s1 0.825 4s24p65s2

0.037 4s24p44d25s1 0.079 4s24p65p2

0.006 4s14p54d14f15s1 0.033 4s24p44d25s2

0.005 4s24p54d15p1 0.009 4s24p66s2

0.004 4s24p45s15p2 0.005 4s14p54d14f15s2


