
1

Large-scale nonrelativistic multireference 

configuration interaction calculation 

of the ground state 3P of the carbon atom
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Abstract

The ground state 3P energy of the carbon atom which is given from large-scale nonrelativistic 

multireference configuration interaction (MRCI) calculations is presented. The maximum angular 

momentum of orbitals used is 9 (i.e., m-symmetry). The orbitals used are the Hartree-Fock orbitals 

for occupied orbitals and natural orbitals for the correlating orbitals. The number of expansion terms 

in the largest MRCI wave function is 6,235,756. The MRCI energy obtained is –37.844698 hartree. 

The full configuration interaction (FCI) energy limit is estimated: the estimated energy is –37.84475 

hartree. Moreover, the energy contribution from the orbitals having higher angular momentum is 

estimated. The final estimated energy is –37.84487 hartree.

1. INTRODUCTION

The electronic structure of atoms is described by the wave function Ψ, which is given from the 

Schrödinger equation:

HΨ = EΨ .� (1)

Here, H is the nonrelativistic Hamiltonian:

H =     (–    ∆i – ri
–1) +     rij

–1,� (2)

where ri is the distance between the i-th electron and the nuclei, and rij is the distance between 

the i-th electron and the j-th electron. Eq.(1) is solved by various methods, e.g., configuration 

interaction (CI), coupled cluster (CC), many-body perturbation theory (MBPT), or explicitly 
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correlated function (ECF) methods. In particular, the ECF method is powerful and gives highly 

accurate results. Unfortunately, it is very difficult to apply the ECF method to many-electronic 

systems because of appearance of complicated Hamiltonian matrix elements. Even the calculation 

for the carbon atom with 6 electrons is difficult.

The CI method can be applied to many-electronic atoms and is extensively used because the CI 

wave function is simple form. The CI wave function is expressed by a linear combination of excited 

configuration state functions (CSFs) from a reference configuration Φ: 

Ψ = Φ +     Ci
SΦi

S +     Ci
DΦi

D +     Ci
TΦi

T +     Ci
Q Φi

Q + ...,� (3)

where Φi
S, Φi

D, Φi
T, and Φi

D are singly, doubly, triply, and quadruply excited CSFs from Φ, respectively. 

Actual calculations use truncated CI wave functions because the full CI (FCI) wave function is 

very large. The simplest truncated CI wave function is a linear combination of singly and doubly 

excited configurations from a single reference configuration: this CI wave function is called a ‘single 

reference singly and doubly excited CI’ (SRSDCI) one. The SRSDCI wave function only considers 

two-body effects. It is important to further incorporate many-body effects into the CI wave function. 

Most important many-body effect is described by quadruply excited configurations. To effectively 

consider the many-body effects, multiple reference configurations are employed. Such the CI 

wave function is called a ‘multireference singly and doubly excited CI’ (MRSDCI) one. Since the 

MRSDCI wave function can incorporate the many-body effects beyond the two-body effect, the 

MRSDCI energy converges rapidly to the FCI one. Therefore, the MRSDCI method is superior about 

consideration of the many-body effects.

A defect of the CI wave function is to restrict incorporation of the higher partial wave component 

of the electron pair. Correct wave function must include inter-electronic distances. The inter-

electronic distance between the electron 1 and 2, r12, is expanded as

r12 =             (–             +             )       Yl
–m (θ1φ1) Yl

m(θ2φ2),� (4)

where r> is the greater of r1 and r2, r< is the lesser, and Yl
m is the spherical harmonics. As seen 

from Eq.(4), the CI wave function must be used orbitals having infinite angular momentum. In actual 

CI calculations, however, only the orbitals with finite angular momentum can be used. The maximum 

angular momentum used is less than 10 usually because the CI wave function becomes large size. 

Our aim is to obtain the ground state energy of the carbon atom from large-scale nonrelativistic 
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MRSDCI calculations. Furthermore, the FCI energy limit and the higher λ effect were estimated by 

extrapolation techniques. To this end, the Hartree-Fock (HF) calculation for the ground state 3P of 

the carbon atom was first performed. Subsequently, SRSDCI and MRSDCI calculations were carried 

out. The present CI calculations employed the HF orbitals for occupied ones and the natural orbitals 

(NOs) for the correlating ones.

The orbital is usually expanded by Slater-type functions (STFs) and Gauss-type functions (GTFs). 

This work adopted a set of B-splines1,2. The B-splines of order K {Bi,K (r)} are piecewise polynomials 

of degree K – 1 on a knot sequence in a cavity of radius R. The knot sequence {ti} is a set of points 

defined on an interval [0, R]. Bi,K (r) is nonzero in the interval [ti, ti+K ). The advantage of B-splines is 

that they are very flexible and are relatively free from computational linear dependence. Thus, it is 

possible to apply a single B-spline set to the expansion of orbitals, irrespective of orbital symmetry, 

without loss of accuracy. Atomic calculations with the B-spline set will give highly accurate results. 

The atomic HF calculations with the B-spline set gives highly accurate energies.3,4

The next section explains basis functions used, NO construction procedures, and extrapolation 

procedures. The third section summarizes the ground state energy of the carbon atom and discusses 

comparison with the other CI energies and the estimated exact value. 

2. COMPUTATIONAL ASPECT

The B-spline set used for the present calculations were constructed on the exponential knot 

sequence5, with endpoints of K-fold multiplicity. The knot sequence {ti}i=1, 2, …, N+K+2 can be written as

{ti}i=1, …, K = 0,� (5)

{ti}i=K+1, …, N+2 = R1 (    )    ,� (6)

{ti}i=N+3, …, N+K+2 = R,� (7)

where R1 is the initial interval. Since the first and last terms of the B-splines with K-fold multiplicity 

are nonzero at r = 0 and at r = R, respectively, the N-term B-spline set was constructed omitting 

them, in order to satisfy the boundary conditions. This work employed the parameters, N = 100, 

R = 60 (bohr), K = 9, and R1 = 10–4 (bohr).

Our CI calculations used the HF orbitals for occupied orbitals and the NOs for the correlating 

orbitals. The NOs were generated by a series of SRSDCI calculations with the reference space 

consisting of the HF configurations.

Let us now explain the generating procedure for NOs. First, the SRSDCI calculation was carried 

out with the HF orbitals in the sp-space, to obtain sp-NOs. Subsequently, d-NOs were generated 

R
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i – K – 1
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by the SRSDCI calculation with the sp-NOs. The NOs with higher angular momentum than d-NOs 

were generated in the same way, step by step. The spdf-NOs were truncated until 30-terms for each 

symmetry. NOs with higher symmetry greater than f were truncated so that the energy loss was less 

than –10–6 hartree at each step. Finally, we obtained an orbital set (30s30p30d30f30g28h27i25k25l2

4m). SRSDCI and MRSDCI calculations were carried out using this orbital set. 

To estimate the FCI limit for the energy, a further series of MRSDCI calculations was carried out 

using the orbital set, increasing the reference configurations which were selected for the largest 

weight in the previous MRSDCI wave function. The FCI limits of the MRSDCI energies (ECI) 

were estimated by extrapolating ECI to wref=1, where wref is the weight of reference space. The 

convergence pattern of ECI, ECI+Q, and EAV were analyzed with respect to wref. ECI+Q is ECI plus the 

quadruple correction6. EAV is the average of ECI and ECI+Q. Although EAV has no physical meaning, EAV 

is very useful for estimating the FCI limit. 

The higher λ effect for the MRSDCI energies was also estimated by extrapolating the energy 

contributions due to the respective λ-NOs to λ→∞. To treat the systems on equal footing, we 

extrapolated the CI energies to λ→∞ using ECI with wref ≈ 0.998. The energy contribution ΔEλ is 

plotted on a log-log scale, and it was fitted by a linear relation. The energy contribution from the NOs 

having angular momentum greater than 9 (Eλ>9) was estimated as 

Eλ>9 =      ΔEλ.� (8)

The FCI energy limit including the higher λ effect was finally obtained.

The HF calculations with the B-spline set were carried out using our atomic self-consistent field 

program code based on the algorithm of Roothaan and Bagus7. All CI calculations were performed by 

the program ATOMCI8,9.

3. RESULTS AND DISCUSSION

Table 1 summarizes the CI energies and the quadruple corrected energies of SRSDCI and MRSDCI 

calculations, together with other CI works. Each CI calculation is denoted as SRSDCI(λ) and 

MRSDCI(λ), where λ is the maximum angular momentum of the orbital set used. The MRSDCI(m) 

energy is –37.844698 hartree. The difference between this energy and the SRSDCI(m) energy 

–37.837750 hartree is large. This shows that the many-body effects are large. The quadruple 

corrected SRSDCI(m) energy is –37.844757 hartree. This energy is very near to the MRSDCI(m) 

∞

�
λ = 10
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energy. Table 2 lists the weights of principal reference configurations of the MRSDCI(m) wave 

function. Although the main configuration of the MRSDCI(m) function is the HF configuration, the 

weights of doubly excited configurations from the HF configuration are also large. These doubly 

excited configurations induce quadruply excited configurations from the HF configuration. This 

shows that quadruply excited configurations are important.

Table 1. �CI energies (ECI) and quadruple corrected energies (ECI+Q) of SRSDCI, MRSDCI, and other CI 

works (in hartree). NCI is the number of expansion terms in CI wave function. 

Method Orbital set NCI ECI ECI+Q

This work

SRSDCI(p) (30s30p) 7,483 –37.777320 –37.780176

SRSDCI(d) (30s30p30d) 13,438 –37.828576 –37.835389

SRSDCI(f) (30s30p30d30f) 19,333 –37.834933 –37.841916

SRSDCI(g) (30s30p30d30f30g) 25,228 –37.836558 –37.843559

SRSDCI(h) (30s30p30d30f30g28h) 30,590 –37.837172 –37.844178

SRSDCI(i) (30s30p30d30f30g28h27i) 35,477 –37.837457 –37.844464

SRSDCI(k) (30s30p30d30f30g28h27i25k) 39,777 –37.837608 –37.844616

SRSDCI(l) (30s30p30d30f30g28h27i25k25l) 43,877 –37.837696 –37.844703

SRSDCI(m) (30s30p30d30f30g28h27i25k25l24m) 47,753 –37.837750 –37.844757

MRSDCI(p) (30s30p) 150,780 –37.779846 –37.779965

MRSDCI(d) (30s30p30d) 961,515 –37.834542 –37.834671

MRSDCI(f) (30s30p30d30f) 2,262,542 –37.841772 –37.841873

MRSDCI(g) (30s30p30d30f30g) 3,519,573 –37.843481 –37.843586

MRSDCI(h) (30s30p30d30f30g28h) 3,889,442 –37.844110 –37.844218

MRSDCI(i) (30s30p30d30f30g28h27i) 4,559,555 –37.844401 –37.844509

MRSDCI(k) (30s30p30d30f30g28h27i25k) 5,796,821 –37.844555 –37.844664

MRSDCI(l) (30s30p30d30f30g28h27i25k25l) 5,710,780 –37.844643 –37.844751

MRSDCI(m) (30s30p30d30f30g28h27i25k25l24m) 6,235,756 –37.844698 –37.844806

Other works

DCI a (4s3p2d2f) 40 –37.77888

SDCI b (6s6p6d4f) 181 –37.7507

FCI c (7s6p5d3f) 234 –37.83378

SDTQCI d (10s9p8d8f6g4h2i) 993 –37.8393

selected CI f (7s6p5d4f3g) 1,080 –37.835365
a A.W. Weiss (Ref.10).
b H.F. Schaefer et al. (Ref.11).
c A. Bunge et al. (Refs.12 and 13).
d F. Sasaki and M. Yoshimine (Ref.14).
f M.B. Ruiz and R. Tröger (Ref.15).
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Table 2. Weight of principle reference configurations

wRef Configuration

0.970720 1s2 2s2 2p2

0.141121 1s2 2s1 2p2 3d1

0.132360 1s2 2p4

0.071498 1s2 2s1 2p1 3s1 3p1

Let us compare with other CI works: the doubly excited CI (DCI) energy of Weiss10, the singly 

and doubly excited CI (SDCI) energy of Schaefer et al.11, the FCI energy of Bunge et al.12,13, the 

singly, doubly, triply, and quadruly excited CI (SDTQCI) of Sasaki and Yoshimine14, and the selected 

CI energy of Ruiz and R. Tröger15. All other CI works listed in Table 1 used STFs. The FCI energy 

–37.83378 hartree is smaller than MRSDCI( f) energy –37.841772 hartree. The SDTQCI energy is 

also smaller than the MRSDCI(i) energy. This reason is that the FCI and the SDTQCI calculations 

used small orbital set. 

The CI energy –37.844698 hartree was obtained from the largest MRSDCI(m) calculation. The FCI 

limit energy was estimated by extrapolation ECI to wref = 1. Fig. 1 shows the convergence pattern of 

ECI, ECI+Q, and EAV against the weight of reference space. This extrapolations estimated FCI energy 

limit –37.84475 hartree. The rest many-body effect (~ –0.00005 hartree) is very small because the 

weight of reference space of the MRSDCI wave function is very near to 1: wref ≈ 0.998. 

Fig. 1. Convergence of CI energy with respect to the weight of the reference space.
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The higher λ effect for the CI energies was also estimated by extrapolating the energy 

contributions due to the respective λ-NOs to λ→∞. Fig.2 shows the energy contribution to the CI 

energy from the respective λ-NOs, on a log-log scale. It reveals that the energy contribution by adding 

λ-NOs (–ΔEλ) converges linearly at λ ≥ 4. This correlation can be expressed as 

–ΔEλ = aλ– b,� (9)

where a and b are fitting parameters. The energy contribution from the NOs having angular 

momentum greater than 9 are estimated as Eq.(8). The energy contribution –0.00012 hartree was 

obtained. Thus, the energy –37.84487 hartree was obtained. Table 3 lists the energies of this work 

and the estimated exact value. The two extrapolations estimated the energy lowering ~ 0.00017 

hartree. The total energy of FCI limit + higher λ is quite near to the estimated exact value: the 

difference is ~ –0.0001 hartree. 

Fig. 2 Contributions to CI energy from the respective λ orbitals.

Table 3. Extrapolated energies and estimated exact value (in hartree).

Method Reference Energy

MRSDCI(m) This work –37.844698

FCI limit This work –37.84475

FCI limit + higher λ This work –37.84487

Estimated exact value Ref.16 –37.8450
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In summary, the ground state energy of the carbon atom –37.844698 hartree was given from 

the MRSDCI(m) wave function expanded with 6,235,756 CSFs. Furthermore, the FCI limit energy 

–37.84475 hartree and the FCI limit + higher λ energy –37.84487 hartree were estimated by the 

extrapolation techniques. Although the MRSDCI(m) energy is very near to the estimated exact 

value, the remaining many-body and higher λ effects are still large. The present calculation is 

probably the limit of the CI calculation for the carbon atom.
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