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1　Introduction

　The optimal policy in the case where the government can control both monetary and fis-

cal policy has been variously discussed, such as in Mulligan and Sala-I-Martin（1997）and 

Chari and Kehoe（1999）. However, this point is not studied sufficiently in the case where 

households have a preference of quasi-geometric（hyperbolic）discounting, as mentioned 
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in later this section. In this study, we incorporate monetary and fiscal policy into a dynam-

ic general equilibrium model with quasi-geometric discounting. Concretely, we use Maeda

（2018）which incorporates money into Krusell et al.（2002）by assuming that households 

face a cash-in-advance（CIA）constraint on consumption. Through this extension, we ob-

tain the following two outcomes: First, when the government can control only money sup-

ply, the Friedman rule
1
 is optimal. In the model, when households have the preference of the 

present bias, their labor supply is less than the optimal amount. Generally, the government 

can increase the labor supply by decreasing the inflation. Therefore, the government makes 

the nominal interest rate be zero to increase the labor supply. Second, when the government 

controls both money supply and income tax rates, the optimal inflation rate can be posi-

tive. As Maeda（2018）shows, over-saving can occur. In this case, if the government taxes 

capital income, it can improve welfare by reducing the saving rate. This relaxes the govern-

ment’s budget constraint, so the government decreases the labor income tax, causing the la-

bor supply to increase. However, in some cases, households supply too much labor, in which 

case the government can improve welfare by increasing inflation to reduce the labor supply.

　Next, we survey the related literature, including papers that study a dynamic general equi-

librium model with hyperbolic discounting and money. Gong and Zhu（2009）show that 

money is super-neutral, but they do not analyze the implication of the policy and welfare. 

Boulware et al.（2013）study the model in which individuals accumulate only money and 

show that inflation is the cost for the economy. Graham and Snower（2008, 2013）study 

the New Keynesian model with wage stickiness but without capital accumulation. Graham 

and Snower（2013）analyze the optimal monetary policy when the government taxes labor 

income, but only with labor income tax as given. They do not analyze the optimal fiscal pol-

icy. Also related to time-inconsistency and money, Hiraguchi（2016）studies the monetary 

search model which introduces temptation and shows that the Friedman rule is not optimal. 

Hori et al.（2021）study the non-unitary discount model in which the household’s discount 

rate is different between consumption and labor. They show that the Friedman rule is not 

optimal when the discount rate of the consumption is higher than that of the labor. Howev-

er, these studies do not assume hyperbolic discounting, which we incorporate into this study.

　The remainder of this paper is organized as follows: Section 2 provides our model. Section 

3 covers the optimization of households and the equilibrium. Section 4 lays out the analysis 

of the government’s policy. Section 5 concludes the paper.

　 　

1 Friedman（1969）argued a monetary policy rule where the optimal nominal interest rate is zero
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2　The Model

　In this section, we explain the goods market, the capital and labor markets, the govern-

ment, and households in this economy.

The goods market.　In this economy, a good exists that is produced by inputting capital and 

labor. The production function is a Cobb-Douglas function. We assume that capital is fully 

depreciated. Therefore, the goods market clearing condition is as follows:
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labor. The production function is a Cobb-Douglas function. We assume that capital is fully

depreciated. Therefore, the goods market clearing condition is as follows:

Ak̄αt−1 l̄
1−α
t = c̄t + k̄t, (1)

where k̄t is the capital accumulated by period t, l̄t is the labor supply, c̄t is consumption, A > 0

is the productivity parameter, and α ∈ (0, 1) is the capital share2. k̄t, l̄t and c̄t are aggregate

values in this economy. We also assume that the goods market is perfectly competitive.

The capital and labor markets. These markets are also perfectly competitive, implying

marginal-product pricing of the capital and labor inputs:

rt = αAk̄α−1
t−1 l̄

1−α
t (2)

wt = (1− α)Ak̄αt−1 l̄
−α
t , (3)

where rt is a real rental price for capital, and wt is a real wage.

Government. The government issues money at a constant growth rate, θ. Therefore, we

obtain the dynamics of the real money stock as follows:

m̄t =
1 + θ

1 + πt
m̄t−1, (4)

where m̄t is the real money stock and πt is the inflation rate. Notice that the government’s real

income from issuing money at period t is θ
1+πt

m̄t−1. The government taxes households’ income

2We assume in the following paragraph that the government transfers all of its income to households, so (1)
does not include the government’s spending.
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 The government taxes house-

holds’ income from capital and labor, so the government’s real income from taxation is:
from capital and labor, so the government’s real income from taxation is:

τg,t = τrrtk̄t−1 + τwwt l̄t, (5)

where τg,t is the government’s real income from taxing, τr is the tax rate of capital income, and

τw is tax rate of labor income. Moreover, we assume that tax rates stay constant for all time.

In this economy, the government transfers all of its income to households:

τt = τg,t +
θ

1 + πt
m̄t−1 = τrrtk̄t−1 + τwwt l̄t +

θ

1 + πt
m̄t−1, (6)

where τt is the real transfer to households.

Households. There is one unit of household whose size does not change. We assume each

household has one unit of time, divided into leisure and labor. We also assume a utility function

with consumption and leisure:

u(ct, lt) = ln ct + µ ln(1− lt), (7)

where ct is consumption, lt is labor supply, and µ ≥ 0 is the parameter of the preference for

leisure. In this economy, there are two assets: capital and money. Therefore, the household’s

real budget constraint is:

kt +mt = (1− τr)rtkt−1 + (1− τw)wtlt +
mt−1

1 + πt
+ τt − ct, (8)

where kt is capital and mt is money held by the household. We suppose that households face

the CIA constraint as follows:

ct ≤
mt−1

1 + πt
+

θ

1 + πt
m̄t−1. (9)

Households have the preference of quasi-geometric discounting, so their time utility is:

Ut = u(ct, lt) + β

∞∑
s=t+1

δs−tu(cs, ls), (β > 0, 0 < δ < 1) (10)

4

（5）

　 　

2 We assume in the following paragraph that the government transfers all of its income to households, 

so（1）does not include the government’s spending.
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where β is the parameter of the present bias and δ is the discount factor.

3　Optimization of households and Equilibrium

　In this section, we explain the optimization problem of households and the market equi-

librium, using the following notations: Subscripts for all of the variables are omitted, such as 

l, and “ ′ ” has been added to the superscript of the stock variable, which is accumulated in 

the next period, such as k′.
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3 Optimization of households and Equilibrium

In this section, we explain the optimization problem of households and the market equilibrium,

using the following notations: Subscripts for all of the variables are omitted, such as l, and “

′ ” has been added to the superscript of the stock variable, which is accumulated in the next

period, such as k′.

Households choose their behavior, c, l, k′, and m′, by assuming that the rental price of

capital r(k̄, l̄), wages w(k̄, l̄), inflation rate π(k̄, m̄, l̄), the dynamics of aggregate capital holdings

k̄′ = G(k̄, m̄), the dynamics of money m̄t = 1+θ
1+πt

m̄t−1, and the aggregate labor supply l̄ =

J(k̄, m̄) are given because these variables depend on aggregate capital k̄, aggregate labor l̄, and

government policies m̄ and θ, which households cannot choose. We assume that the household

behaves according to given future decision rules k′ = g(k,m, k̄, m̄, l̄), m′ = h(k,m, k̄, m̄, l̄), and

l = j(k,m, k̄, m̄, l̄) and that the CIA constraint is binding. Here, we seek an equilibrium in

which G, g, h, J , and j are time-invariant. The problem of the current self is:

V0(k,m, k̄, m̄) = max
l,k′,m′

[
ln

(
1

1 + π
m+

θ

1 + π
m̄

)
+ µ ln(1− l) + βδV (k′,m′, k̄′, m̄′)

]
(11)

s.t. (1− τr)r(k̄, l̄)k + (1− τw)w(k̄, l̄)l + τg,t = k′ +m′, (12)

where V (k,m, k̄, m̄) is the value function after a period. The current self believes that the future
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The definition of equilibrium is as follows:

Definition 1.　A recursive competitive equilibrium for this economy consists of decision rules g

（k, m, k̄, m̄, l̄）, h（k, m, k̄, m̄, l̄）, and j（k, m, k̄, m̄, l̄）, a value function V（k, m, k̄, m̄）, pric-

ing functions r（k̄, l̄）, w（k̄, l̄）and π（k̄, m̄, l̄）, law of motion for aggregate capital k̄′ = G（k̄, 

m̄）, the government’s policy 

tions r(k̄, l̄), w(k̄, l̄) and π(k̄, m̄, l̄), law of motion for aggregate capital k̄′ = G(k̄, m̄), the govern-

ment’s policy m̄′ = 1+θ
1+π m̄, and aggregate labor supply l̄ = J(k̄, m̄) such that:

1. given V (k,m, k̄, m̄), G(k̄, m̄), J(k̄, m̄), m̄′ = 1+θ
1+π m̄, and the taxes (τr and τw), the rules

g(k,m, k̄, m̄, l̄), h(k,m, k̄, m̄, l̄), and j(k,m, k̄, m̄, l̄) solve the optimization problem (11);

2. given g(k,m, k̄, m̄, l̄), h(k,m, k̄, m̄, l̄), j(k,m, k̄, m̄, l̄), G(k̄, m̄), m̄′ = 1+θ
1+π m̄, J(k̄, m̄), and

the taxes (τr and τw), the function V (k,m, k̄, m̄) satisfies (13);

3. the CIA constraint is binding;

4. r(k̄, l̄) = αAk̄α−1 l̄1−α, w(k̄, l̄) = (1− α)Ak̄α l̄−α; and

5. g(k̄, m̄, k̄, m̄, l̄) = G(k̄, m̄), h(k̄, m̄, k̄, m̄, l̄) = m̄′ and j(k̄, m̄, k̄, m̄, l̄) = J(k̄, m̄).

If we solve the household optimization problem according to this definition3, the saving rate,

sα, and labor supply, l̄∗, in the recursive competitive equilibrium are given by:

sα =
αβδ(δ + µ)

βδ + µ[1− δ(1− β)]
(1− τr), (14)

l̄∗ =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

. (15)

If the government does not tax, we can obtain sα = αβδ(δ+µ)
βδ+µ[1−δ(1−β)] and l̄∗ = 1−α

1−α+ 1+θ
βδ

µ(1−sα)
.

These are the same as in Maeda (2018), which assumes no tax.

4 Policy Analysis

In this section, we discuss the government’s policy, starting with only monetary policy. In the

second subsection, we consider both monetary and fiscal policy.

4.1 Monetary policy

In this subsection, to consider only the monetary policy, τr = τw = 0. We define the value

function V0(k,m, k̄, m̄) as the welfare function as in Maeda (2018). The study show that the

3We show this calculation in Appendix A.
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If we solve the household optimization problem according to this definition3, the saving rate,

sα, and labor supply, l̄∗, in the recursive competitive equilibrium are given by:

sα =
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βδ + µ[1− δ(1− β)]
(1− τr), (14)

l̄∗ =
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If the government does not tax, we can obtain sα = αβδ(δ+µ)
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1−α+ 1+θ
βδ
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.
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4 Policy Analysis

In this section, we discuss the government’s policy, starting with only monetary policy. In the

second subsection, we consider both monetary and fiscal policy.

4.1 Monetary policy

In this subsection, to consider only the monetary policy, τr = τw = 0. We define the value

function V0(k,m, k̄, m̄) as the welfare function as in Maeda (2018). The study show that the
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J（k̄, m̄）, 

and the taxes（τr and τw）, the function V（k, m, k̄, m̄）satisfies（13）;

3. the CIA constraint is binding;

4. r（k̄, l̄）= αAk̄
α－1 

l̄
 1－α

, w（k̄, l̄）=（1－α）Ak̄
α

l̄
－α

; and

5. g（k̄, m̄, k̄, m̄, l̄）= G（k̄, m̄）, h（k̄, m̄, k̄, m̄, l̄）= m̄′ and j（k̄, m̄, k̄, m̄, l̄）= J（k̄, m̄）.
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　If we solve the household optimization problem according to this definition
3
, the saving 

rate, sα, and labor supply, l̄*, in the recursive competitive equilibrium are given by:

tions r(k̄, l̄), w(k̄, l̄) and π(k̄, m̄, l̄), law of motion for aggregate capital k̄′ = G(k̄, m̄), the govern-

ment’s policy m̄′ = 1+θ
1+π m̄, and aggregate labor supply l̄ = J(k̄, m̄) such that:

1. given V (k,m, k̄, m̄), G(k̄, m̄), J(k̄, m̄), m̄′ = 1+θ
1+π m̄, and the taxes (τr and τw), the rules

g(k,m, k̄, m̄, l̄), h(k,m, k̄, m̄, l̄), and j(k,m, k̄, m̄, l̄) solve the optimization problem (11);

2. given g(k,m, k̄, m̄, l̄), h(k,m, k̄, m̄, l̄), j(k,m, k̄, m̄, l̄), G(k̄, m̄), m̄′ = 1+θ
1+π m̄, J(k̄, m̄), and

the taxes (τr and τw), the function V (k,m, k̄, m̄) satisfies (13);

3. the CIA constraint is binding;

4. r(k̄, l̄) = αAk̄α−1 l̄1−α, w(k̄, l̄) = (1− α)Ak̄α l̄−α; and

5. g(k̄, m̄, k̄, m̄, l̄) = G(k̄, m̄), h(k̄, m̄, k̄, m̄, l̄) = m̄′ and j(k̄, m̄, k̄, m̄, l̄) = J(k̄, m̄).

If we solve the household optimization problem according to this definition3, the saving rate,

sα, and labor supply, l̄∗, in the recursive competitive equilibrium are given by:

sα =
αβδ(δ + µ)

βδ + µ[1− δ(1− β)]
(1− τr), (14)

l̄∗ =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

. (15)

If the government does not tax, we can obtain sα = αβδ(δ+µ)
βδ+µ[1−δ(1−β)] and l̄∗ = 1−α

1−α+ 1+θ
βδ

µ(1−sα)
.

These are the same as in Maeda (2018), which assumes no tax.

4 Policy Analysis

In this section, we discuss the government’s policy, starting with only monetary policy. In the

second subsection, we consider both monetary and fiscal policy.

4.1 Monetary policy

In this subsection, to consider only the monetary policy, τr = τw = 0. We define the value

function V0(k,m, k̄, m̄) as the welfare function as in Maeda (2018). The study show that the

3We show this calculation in Appendix A.
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tions r(k̄, l̄), w(k̄, l̄) and π(k̄, m̄, l̄), law of motion for aggregate capital k̄′ = G(k̄, m̄), the govern-

ment’s policy m̄′ = 1+θ
1+π m̄, and aggregate labor supply l̄ = J(k̄, m̄) such that:

1. given V (k,m, k̄, m̄), G(k̄, m̄), J(k̄, m̄), m̄′ = 1+θ
1+π m̄, and the taxes (τr and τw), the rules

g(k,m, k̄, m̄, l̄), h(k,m, k̄, m̄, l̄), and j(k,m, k̄, m̄, l̄) solve the optimization problem (11);

2. given g(k,m, k̄, m̄, l̄), h(k,m, k̄, m̄, l̄), j(k,m, k̄, m̄, l̄), G(k̄, m̄), m̄′ = 1+θ
1+π m̄, J(k̄, m̄), and

the taxes (τr and τw), the function V (k,m, k̄, m̄) satisfies (13);

3. the CIA constraint is binding;

4. r(k̄, l̄) = αAk̄α−1 l̄1−α, w(k̄, l̄) = (1− α)Ak̄α l̄−α; and

5. g(k̄, m̄, k̄, m̄, l̄) = G(k̄, m̄), h(k̄, m̄, k̄, m̄, l̄) = m̄′ and j(k̄, m̄, k̄, m̄, l̄) = J(k̄, m̄).

If we solve the household optimization problem according to this definition3, the saving rate,

sα, and labor supply, l̄∗, in the recursive competitive equilibrium are given by:

sα =
αβδ(δ + µ)

βδ + µ[1− δ(1− β)]
(1− τr), (14)

l̄∗ =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

. (15)

If the government does not tax, we can obtain sα = αβδ(δ+µ)
βδ+µ[1−δ(1−β)] and l̄∗ = 1−α

1−α+ 1+θ
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4　Policy Analysis

　In this section, we discuss the government’s policy, starting with only monetary policy. In 

the second subsection, we consider both monetary and fiscal policy.

4.1　Monetary policy

　In this subsection, to consider only the monetary policy, τr = τw = 0. We define the value 

function V0（k, m, k̄, m̄）as the welfare function as in Maeda（2018）. The study show that 

the growth rate of money maximizing the welfare is given by:growth rate of money maximizing the welfare is given by:

θ̄ = βδ
1− sop

1− sα
− 1. (16)

Here, we focus on the steady state to see if the Friedman rule is optimal. We derive the rental

price of capital in the steady state. Using (14) and (15), the amount of capital in next period is

given by: k̄′ = sαAk̄α(l̄∗)1−α. Combining k̄′ = k̄ in the steady state and (2), the rental price of

capital in the steady state is:

r∗ =
1

s
. (17)

The inflation rate in the steady state is equal to θ. From (17) and π = θ, the nominal interest

rate in the steady state is:

i =
1 + θ

s
− 1 (18)

Substituting (16) into (18), we obtain the following proposition:

Proposition 1. If β ≤ (>)1 in the steady state, then the Friedman rule is (not) optimal.

Proof. Substituting (16) into (18), we obtain the nominal interest rate:

ī = (β−1){(1−αδ)(1+µ)[µ(δ−1)2+β2δ2(1+µ)]+β(1−δ)δ[(1−αδ)((1−αδ)+µ(3−α)+µ2)+α2(δ+µ)µ]}
β(1−αδ)[1−δ(1−β)](δ+µ)[µ(1−δ)βδ(1+µ)] . (19)

If β ≤ (>)1, then (19) is negative or 0 (positive). Because the nominal return of money is 0,

the nominal interest rate does not negative. Therefore, if β ≤ (>)1, the Friedman rule is (not)

optimal.

This proposition implies that if households are impatient (β is small), then the optimal

nominal interest rate is small. Because ∂sα
∂β = αδ(δ+µ)µ(1−δ)

{βδ+µ[1−δ(1−β)]}2 > 0, we find that:

∂l̄∗

∂β
=

(1− α)
[
δ + µ(1 + θ)∂sα∂β

]

[1− α+ 1+θ
µ (1− s)]2

> 0. (20)

This implies that if β is small, then the labor supply may be too small. Therefore, the government
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3 We show this calculation in Appendix A.
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This implies that if β is small, then the labor supply may be too small. Therefore, the gov-

ernment decreases the money supply to increase the labor supply. This is the intuitive con-

clusion that the Friedman rule is optimal.

4.2　Monetary and Fiscal policy

　Maeda（2018）shows that the optimal saving rate and labor supply that maximize V0（k, m, 

k̄, m̄）are given by:

decreases the money supply to increase the labor supply. This is the intuitive conclusion that

the Friedman rule is optimal.

4.2 Monetary and Fiscal policy

Maeda (2018) shows that the optimal saving rate and labor supply that maximize V0(k,m, k̄, m̄)

are given by:

sop =
αβδ

(1− αδ)[1− δ(1− β)] + αβδ
, (21)

l̄op =
1− α

1− α+ µ(1− sop)
. (22)

Comparing the saving rate in the recursive competitive equilibrium with no tax, (14) and the

optimal saving rate, (21), we find that these saving rates are different. However, monetary

policy does not affect the saving rate. Therefore, in this subsection, we introduce taxes as well

as monetary policy, and seek the optimal policy.

In this economy, the government’s transfer does not affect the saving rate, and labor supply.

Therefore, we give the amount of transfer exogenously as follows:

τg,t = 0, (23)

τt =
θ

1 + π
m̄ for all t. (24)

We define V0(k,m, k̄, m̄) as the welfare function. We can maximize welfare by adjusting the

saving rate and labor supply in competitive equilibrium as follows: sα = sop, l̄∗ = l̄op. Conse-

quently, we obtain the optimal policy as follows:

τ∗r =
(1− β)δ(1− δ)(1− αδ − αµ)

{(1− αδ)[1− δ(1− β)] + αβδ}(δ + µ)
(25)

τ∗w = − α

1− α

(1− β)δ(1− δ)(1− αδ − αµ)

{(1− αδ)[1− δ(1− β)] + αβδ}(δ + µ)
(26)

θ∗ = βδ

{
1 +

α

1− α

(1− β)δ(1− δ)(1− αδ − αµ)

{(1− αδ)[1− δ(1− β)] + αβδ}(δ + µ)

}
− 1. (27)

From (25), (26), and (27), we obtain following proposition.

Proposition 2. In the steady state, when the government uses the monetary and fiscal policy
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from capital and labor, so the government’s real income from taxation is:

τg,t = τrrtk̄t−1 + τwwt l̄t, (5)

where τg,t is the government’s real income from taxing, τr is the tax rate of capital income, and

τw is tax rate of labor income. Moreover, we assume that tax rates stay constant for all time.
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θ
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m̄t−1 = τrrtk̄t−1 + τwwt l̄t +

θ
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where τt is the real transfer to households.

Households. There is one unit of household whose size does not change. We assume each
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Households have the preference of quasi-geometric discounting, so their time utility is:

Ut = u(ct, lt) + β
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s=t+1

δs−tu(cs, ls), (β > 0, 0 < δ < 1) (10)

4

（24）
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optimal saving rate, (21), we find that these saving rates are different. However, monetary

policy does not affect the saving rate. Therefore, in this subsection, we introduce taxes as well

as monetary policy, and seek the optimal policy.

In this economy, the government’s transfer does not affect the saving rate, and labor supply.

Therefore, we give the amount of transfer exogenously as follows:

τg,t = 0, (23)

τt =
θ

1 + π
m̄ for all t. (24)

We define V0(k,m, k̄, m̄) as the welfare function. We can maximize welfare by adjusting the

saving rate and labor supply in competitive equilibrium as follows: sα = sop, l̄∗ = l̄op. Conse-

quently, we obtain the optimal policy as follows:

τ∗r =
(1− β)δ(1− δ)(1− αδ − αµ)

{(1− αδ)[1− δ(1− β)] + αβδ}(δ + µ)
(25)

τ∗w = − α

1− α

(1− β)δ(1− δ)(1− αδ − αµ)

{(1− αδ)[1− δ(1− β)] + αβδ}(δ + µ)
(26)

θ∗ = βδ

{
1 +

α

1− α

(1− β)δ(1− δ)(1− αδ − αµ)

{(1− αδ)[1− δ(1− β)] + αβδ}(δ + µ)

}
− 1. (27)

From (25), (26), and (27), we obtain following proposition.
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From（25）,（26）, and（27）, we obtain following proposition.

Proposition 2.　In the steady state, when the government uses the monetary and fiscal policy to 

improve the welfare, the Friedman rule is not optimal if β < 1 and μ <to improve the welfare, the Friedman rule is not optimal if β < 1 and µ < α(1+δ2)−δ(1+α)
1−αδ .

Proof. When the government adopts a policy like (25), (26), and (27), the steady-state nominal

interest rate is: i∗ = α1+θ∗

sop − 1. From this equation, we find that if 1 + θ∗ − sop

α > 0, then the

Friedman rule is not optimal. When we calculate it, we obtain as follows:

1 + θ∗ − sop

α
=

(β − 1)βδ2[δ(1 + α)− α(1 + δ2) + µ(1− αδ)]

{(1− αδ)[1− δ(1− β)] + αβδ}(δ + µ)
. (28)

This equation implies that if β < 1 and µ < α(1+δ2)−δ(1+α)
1−αδ , then 1+ θ∗ − sop

α > 0. Therefore, in

this case, we find that the Friedman rule is not optimal.

The reason why the Friedman rule is not optimal is that over-saving occurs. In this economy,

over-saving occurs when µ < 1−αδ
α because sop − sα = αβδ2(1−δ)(1−β)[αµ−(1−αδ)]

{(1−αδ)[1−δ(1−β)]+αβδ}{βδ+µ[1−δ(1−β)]} .

Moreover, since α(1+δ2)−δ(1+α)
1−αδ < 1−αδ

α , if the Friedman rule is not optimal, then over-saving

occurs. When over-saving occurs, the government taxes the capital income to decrease the

saving rate. In such a case, the labor income tax is negative because we assume the government’s

budget constraint is (23). Then households supply labor excessively. This effect is too strong

when µ < α(1+δ2)−δ(1+α)
1−αδ . Therefore, the government induces the nominal interest to be positive

to reduce labor supply. This result is caused by taking distortionary taxes. Our model, in which

the government’s purpose for imposing distortionary taxes is not only financing its expenditure

but also correcting resource allocation, differs from the Phelps (1973) model, in which the

government only has to finance its expenditures. Changing resource allocation is the reason

that the optimal nominal interest rate is positive.

5 Conclusion

In this paper, we covered a general equilibrium model where households have a preference of

quasi-geometric discounting and face a cash-in-advance constraint.

There are two contributions from this study. First, we showed that when the government can

control the only money supply, the Friedman rule is optimal because households do not supply

labor sufficiently when they have the preference of quasi-geometric discounting. Households who

have the preference of the present bias increase their leisure and decrease their labor in current

period. Therefore, the government decreases the nominal interest rate to increase the labor

9
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5　Conclusion

　In this paper, we covered a general equilibrium model where households have a prefer-

ence of quasi-geometric discounting and face a cash-in-advance constraint.

　There are two contributions from this study. First, we showed that when the government 

can control the only money supply, the Friedman rule is optimal because households do 

not supply labor sufficiently when they have the preference of quasi-geometric discounting. 

Households who have the preference of the present bias increase their leisure and decrease 

their labor in current period. Therefore, the government decreases the nominal interest rate 

to increase the labor supply. Second, we show that when the government can control both 

money supply and income tax rates, there exists the case in which the Friedman rule is not 

optimal. In our model, oversaving occurs when households have a preference of quasi-geo-

metric discounting and a weak preference for leisure. In such a case, the optimal fiscal poli-

cy is reducing the investment in capital by taxing capital income. The government decreases 

the labor income tax because they have to satisfy their budget constraint. Households supply 

too much labor, so the government increases the nominal interest rate to a positive level to 

suppress the labor supply. 

Appendix

A　Derivation of（14）and（15）

We solve this problem by the Guess and Verify method. The value function V（k, m, k̄, m̄）

is guessed as follows:

V（k, m, k̄, m̄）= B + ln（m + θm̄）－ ln m̄ + Dlnk̄ + E ln（k + Fk̄）, （A1）

where B, D, E, and F are constant. Because we assume that（9）is binding, we obtain the 

first-order conditions with respect to k′, m′, and l as follows:
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+ λw(1− τw) = 0, (A4)

where λ is the Lagrangian multiplier for the budget constraint (12). From (A2), (A3), and (A4),

we obtain:

k′ = E(m′ + θm̄′)− F k̄′ (A5)

This equation substitutes the budget constraint (12), and we obtain:

m′ =
1

1 + E

{
(1− τr)rk + (1− τw)wl + τg + F k̄′ − Eθm̄

}
(A6)

In the equilibrium, c̄ = 1+θ
1+π m̄ because the CIA constraint (9) is binding. The right-hand side

of this equation equals the right-hand side of equation (4). Therefore, c̄ = m̄′. By assumption,

m = m̄ and k = k̄. From these equations, the goods market clearing condition (1), rental price

of capital (2), wage (3), and the government’s income from taxes (5), we obtain:

m̄′ =
(1 + F )

(1 + F ) + E(1 + θ)
Ak̄α l̄1−α. (A7)
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where λ is the Lagrangian multiplier for the budget constraint（12）. From（A2）,（A3）, 

and（A4）, we obtain:

k′ = E（m′ + θm̄′）－ Fk̄′ （A5）

This equation substitutes the budget constraint（12）, and we obtain:

Appendix

A Derivation of (14) and (15)

We solve this problem by the Guess and Verify method. The value function V (k,m, k̄, m̄) is

guessed as follows:

V (k,m, k̄, m̄) = B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄), (A1)

where B, D, E, and F are constant. Because we assume that (9) is binding, we obtain the

first-order conditions with respect to k′, m′, and l as follows:

βδE

k′ + F k̄′
− λ = 0 (A2)

βδ

m′ + θm̄′ − λ = 0 (A3)

− µ

1− l
+ λw(1− τw) = 0, (A4)

where λ is the Lagrangian multiplier for the budget constraint (12). From (A2), (A3), and (A4),

we obtain:

k′ = E(m′ + θm̄′)− F k̄′ (A5)

This equation substitutes the budget constraint (12), and we obtain:

m′ =
1

1 + E

{
(1− τr)rk + (1− τw)wl + τg + F k̄′ − Eθm̄

}
(A6)

In the equilibrium, c̄ = 1+θ
1+π m̄ because the CIA constraint (9) is binding. The right-hand side

of this equation equals the right-hand side of equation (4). Therefore, c̄ = m̄′. By assumption,

m = m̄ and k = k̄. From these equations, the goods market clearing condition (1), rental price

of capital (2), wage (3), and the government’s income from taxes (5), we obtain:

m̄′ =
(1 + F )

(1 + F ) + E(1 + θ)
Ak̄α l̄1−α. (A7)

11

（A6）

In the equilibrium, 

Appendix

A Derivation of (14) and (15)

We solve this problem by the Guess and Verify method. The value function V (k,m, k̄, m̄) is

guessed as follows:

V (k,m, k̄, m̄) = B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄), (A1)

where B, D, E, and F are constant. Because we assume that (9) is binding, we obtain the

first-order conditions with respect to k′, m′, and l as follows:

βδE

k′ + F k̄′
− λ = 0 (A2)

βδ

m′ + θm̄′ − λ = 0 (A3)

− µ

1− l
+ λw(1− τw) = 0, (A4)

where λ is the Lagrangian multiplier for the budget constraint (12). From (A2), (A3), and (A4),

we obtain:

k′ = E(m′ + θm̄′)− F k̄′ (A5)

This equation substitutes the budget constraint (12), and we obtain:

m′ =
1

1 + E

{
(1− τr)rk + (1− τw)wl + τg + F k̄′ − Eθm̄

}
(A6)

In the equilibrium, c̄ = 1+θ
1+π m̄ because the CIA constraint (9) is binding. The right-hand side

of this equation equals the right-hand side of equation (4). Therefore, c̄ = m̄′. By assumption,

m = m̄ and k = k̄. From these equations, the goods market clearing condition (1), rental price

of capital (2), wage (3), and the government’s income from taxes (5), we obtain:

m̄′ =
(1 + F )

(1 + F ) + E(1 + θ)
Ak̄α l̄1−α. (A7)

11

 because the CIA constraint（9）is binding. The right-hand 

side of this equation equals the right-hand side of equation（4）. Therefore, c̄ = m̄′. By as-

sumption, m = m̄ and k = k̄. From these equations, the goods market clearing condition（1）, 

rental price of capital（2）, wage（3）, and the government’s income from taxes（5）, we ob-

tain:

Appendix

A Derivation of (14) and (15)

We solve this problem by the Guess and Verify method. The value function V (k,m, k̄, m̄) is

guessed as follows:

V (k,m, k̄, m̄) = B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄), (A1)

where B, D, E, and F are constant. Because we assume that (9) is binding, we obtain the

first-order conditions with respect to k′, m′, and l as follows:

βδE

k′ + F k̄′
− λ = 0 (A2)

βδ

m′ + θm̄′ − λ = 0 (A3)

− µ

1− l
+ λw(1− τw) = 0, (A4)

where λ is the Lagrangian multiplier for the budget constraint (12). From (A2), (A3), and (A4),

we obtain:

k′ = E(m′ + θm̄′)− F k̄′ (A5)

This equation substitutes the budget constraint (12), and we obtain:

m′ =
1

1 + E

{
(1− τr)rk + (1− τw)wl + τg + F k̄′ − Eθm̄

}
(A6)

In the equilibrium, c̄ = 1+θ
1+π m̄ because the CIA constraint (9) is binding. The right-hand side

of this equation equals the right-hand side of equation (4). Therefore, c̄ = m̄′. By assumption,

m = m̄ and k = k̄. From these equations, the goods market clearing condition (1), rental price

of capital (2), wage (3), and the government’s income from taxes (5), we obtain:

m̄′ =
(1 + F )

(1 + F ) + E(1 + θ)
Ak̄α l̄1−α. (A7)

11

（A7）
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m̄
. (A8)

Because k̄′ = Ak̄α l̄1−α − c̄ = Ak̄α l̄1−α − m̄′ from (1) and (9), we obtain:

k̄′ = G(k̄, m̄) = sαAk̄α l̄1−α (A9)

where sα ≡ E(1 + θ)

1 + F + E(1 + θ)
. (A10)

From (A3) and (A4), we have:

1− l =
µ

βδ(1− τw)w
(m′ + θm̄′) (A11)

From (A6), (A7), and (A9), we obtain:

m′ + θm̄′

=
1

1 + E

{
(1− τr)rk + (1− τw)wl +

[
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FE(1 + θ) + θ(1 + F )
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]
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}
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}
(A12)

From this equation and (A11), we obtain:

(1− τw)wl
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1

βδ(1 + E) + µ
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βδ(1 + E)(1− τw)w − µ
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(1− τr)rk +

FE(1 + θ) + θ(1 + F )
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]
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. (A13)

Substituting (2) and (3) into this equation, we obtain:

l̄∗ =
βδ(1− α)(1− τw)[(1 + F ) + E(1 + θ)]

βδ(1− α)(1− τw)[(1 + F ) + E(1 + θ)] + µ(1 + θ)(1 + F )
. (A14)

Moreover, substituting (A13) and (A14) into (A12), we obtain:

m′ + θm̄′

=
βδ(1− τr)r

βδ(1 + E) + µ

{
k +

[
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

]
k̄

}
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By definition 1, we must satisfy（13）. Therefore, the following equation is satisfied:By definition 1, we must satisfy (13). Therefore, the following equation is satisfied:

B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄)

= δ[B +D ln sα+ E lnE −D ln] + (1− δ) ln(1− sα) + [1 + δ(D + E)] lnA

+ µ[lnµ− ln(1− τw)− ln(1− α)] + δ(1 + E) lnβδ + (µ+ δ + δE)[lnα+ ln(1− τr)]

− ln(1 + θ) + {αµ+ (1− α)[1 + µ+ δ(D + E)]} ln l̄

+ ln(m+ θm̄)− ln m̄+ [α− δ − (1− α)(µ+ δE) + αδD − αµ] ln k̄

+ (µ+ δ + δE) ln

{
k +

[
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

]
k̄

}
. (A16)

From this equation, we obtain:

E = µ+ δ + δE → E =
µ+ δ

1− δ
(A17)

D = α− δ − (1− α)(µ+ δE) + αδD − αµ → D =
α(1− δ)− (1− αδ)(µ+ δ)

(1− αδ)(1− δ)
(A18)

F =
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

→ F =
βδ[1− αδ(1− τr)] + µ{[1− δ(1− β)]− αβδ(1− τr)}

αβδ(1− δ)(1− τr)
(1 + θ)− 1 (A19)

Finally, these equations substitute (A8), (A10) and (A14), and we obtain:

s =
βδ(µ+ δ)

βδ + µ[1− δ(1− β)]
(1− τr)

l̄∗ = J(k̄, m̄) =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

.

These equations are the same to (14) and (15).
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D = α− δ − (1− α)(µ+ δE) + αδD − αµ → D =
α(1− δ)− (1− αδ)(µ+ δ)

(1− αδ)(1− δ)
(A18)

F =
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

→ F =
βδ[1− αδ(1− τr)] + µ{[1− δ(1− β)]− αβδ(1− τr)}

αβδ(1− δ)(1− τr)
(1 + θ)− 1 (A19)

Finally, these equations substitute (A8), (A10) and (A14), and we obtain:

s =
βδ(µ+ δ)

βδ + µ[1− δ(1− β)]
(1− τr)

l̄∗ = J(k̄, m̄) =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

.

These equations are the same to (14) and (15).
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By definition 1, we must satisfy (13). Therefore, the following equation is satisfied:

B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄)

= δ[B +D ln sα+ E lnE −D ln] + (1− δ) ln(1− sα) + [1 + δ(D + E)] lnA

+ µ[lnµ− ln(1− τw)− ln(1− α)] + δ(1 + E) lnβδ + (µ+ δ + δE)[lnα+ ln(1− τr)]

− ln(1 + θ) + {αµ+ (1− α)[1 + µ+ δ(D + E)]} ln l̄

+ ln(m+ θm̄)− ln m̄+ [α− δ − (1− α)(µ+ δE) + αδD − αµ] ln k̄

+ (µ+ δ + δE) ln

{
k +

[
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

]
k̄

}
. (A16)

From this equation, we obtain:

E = µ+ δ + δE → E =
µ+ δ

1− δ
(A17)

D = α− δ − (1− α)(µ+ δE) + αδD − αµ → D =
α(1− δ)− (1− αδ)(µ+ δ)

(1− αδ)(1− δ)
(A18)

F =
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

→ F =
βδ[1− αδ(1− τr)] + µ{[1− δ(1− β)]− αβδ(1− τr)}

αβδ(1− δ)(1− τr)
(1 + θ)− 1 (A19)

Finally, these equations substitute (A8), (A10) and (A14), and we obtain:

s =
βδ(µ+ δ)

βδ + µ[1− δ(1− β)]
(1− τr)

l̄∗ = J(k̄, m̄) =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

.

These equations are the same to (14) and (15).
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（A16）

From this equation, we obtain:

By definition 1, we must satisfy (13). Therefore, the following equation is satisfied:

B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄)

= δ[B +D ln sα+ E lnE −D ln] + (1− δ) ln(1− sα) + [1 + δ(D + E)] lnA

+ µ[lnµ− ln(1− τw)− ln(1− α)] + δ(1 + E) lnβδ + (µ+ δ + δE)[lnα+ ln(1− τr)]

− ln(1 + θ) + {αµ+ (1− α)[1 + µ+ δ(D + E)]} ln l̄

+ ln(m+ θm̄)− ln m̄+ [α− δ − (1− α)(µ+ δE) + αδD − αµ] ln k̄

+ (µ+ δ + δE) ln

{
k +

[
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

]
k̄

}
. (A16)

From this equation, we obtain:

E = µ+ δ + δE → E =
µ+ δ

1− δ
(A17)

D = α− δ − (1− α)(µ+ δE) + αδD − αµ → D =
α(1− δ)− (1− αδ)(µ+ δ)

(1− αδ)(1− δ)
(A18)

F =
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

→ F =
βδ[1− αδ(1− τr)] + µ{[1− δ(1− β)]− αβδ(1− τr)}

αβδ(1− δ)(1− τr)
(1 + θ)− 1 (A19)

Finally, these equations substitute (A8), (A10) and (A14), and we obtain:

s =
βδ(µ+ δ)

βδ + µ[1− δ(1− β)]
(1− τr)

l̄∗ = J(k̄, m̄) =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

.

These equations are the same to (14) and (15).
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 （A17）

By definition 1, we must satisfy (13). Therefore, the following equation is satisfied:

B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄)

= δ[B +D ln sα+ E lnE −D ln] + (1− δ) ln(1− sα) + [1 + δ(D + E)] lnA

+ µ[lnµ− ln(1− τw)− ln(1− α)] + δ(1 + E) lnβδ + (µ+ δ + δE)[lnα+ ln(1− τr)]

− ln(1 + θ) + {αµ+ (1− α)[1 + µ+ δ(D + E)]} ln l̄

+ ln(m+ θm̄)− ln m̄+ [α− δ − (1− α)(µ+ δE) + αδD − αµ] ln k̄

+ (µ+ δ + δE) ln

{
k +

[
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

]
k̄

}
. (A16)

From this equation, we obtain:

E = µ+ δ + δE → E =
µ+ δ

1− δ
(A17)

D = α− δ − (1− α)(µ+ δE) + αδD − αµ → D =
α(1− δ)− (1− αδ)(µ+ δ)

(1− αδ)(1− δ)
(A18)

F =
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

→ F =
βδ[1− αδ(1− τr)] + µ{[1− δ(1− β)]− αβδ(1− τr)}

αβδ(1− δ)(1− τr)
(1 + θ)− 1 (A19)

Finally, these equations substitute (A8), (A10) and (A14), and we obtain:

s =
βδ(µ+ δ)

βδ + µ[1− δ(1− β)]
(1− τr)

l̄∗ = J(k̄, m̄) =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

.

These equations are the same to (14) and (15).
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By definition 1, we must satisfy (13). Therefore, the following equation is satisfied:

B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄)

= δ[B +D ln sα+ E lnE −D ln] + (1− δ) ln(1− sα) + [1 + δ(D + E)] lnA

+ µ[lnµ− ln(1− τw)− ln(1− α)] + δ(1 + E) lnβδ + (µ+ δ + δE)[lnα+ ln(1− τr)]

− ln(1 + θ) + {αµ+ (1− α)[1 + µ+ δ(D + E)]} ln l̄

+ ln(m+ θm̄)− ln m̄+ [α− δ − (1− α)(µ+ δE) + αδD − αµ] ln k̄

+ (µ+ δ + δE) ln

{
k +

[
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

]
k̄

}
. (A16)

From this equation, we obtain:

E = µ+ δ + δE → E =
µ+ δ

1− δ
(A17)

D = α− δ − (1− α)(µ+ δE) + αδD − αµ → D =
α(1− δ)− (1− αδ)(µ+ δ)

(1− αδ)(1− δ)
(A18)

F =
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

→ F =
βδ[1− αδ(1− τr)] + µ{[1− δ(1− β)]− αβδ(1− τr)}

αβδ(1− δ)(1− τr)
(1 + θ)− 1 (A19)

Finally, these equations substitute (A8), (A10) and (A14), and we obtain:

s =
βδ(µ+ δ)

βδ + µ[1− δ(1− β)]
(1− τr)

l̄∗ = J(k̄, m̄) =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

.

These equations are the same to (14) and (15).
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 （A19）

Finally, these equations substitute（A8）,（A10）and（A14）, and we obtain:

By definition 1, we must satisfy (13). Therefore, the following equation is satisfied:

B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄)

= δ[B +D ln sα+ E lnE −D ln] + (1− δ) ln(1− sα) + [1 + δ(D + E)] lnA

+ µ[lnµ− ln(1− τw)− ln(1− α)] + δ(1 + E) lnβδ + (µ+ δ + δE)[lnα+ ln(1− τr)]

− ln(1 + θ) + {αµ+ (1− α)[1 + µ+ δ(D + E)]} ln l̄

+ ln(m+ θm̄)− ln m̄+ [α− δ − (1− α)(µ+ δE) + αδD − αµ] ln k̄

+ (µ+ δ + δE) ln

{
k +

[
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

]
k̄

}
. (A16)

From this equation, we obtain:

E = µ+ δ + δE → E =
µ+ δ

1− δ
(A17)

D = α− δ − (1− α)(µ+ δE) + αδD − αµ → D =
α(1− δ)− (1− αδ)(µ+ δ)

(1− αδ)(1− δ)
(A18)

F =
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

→ F =
βδ[1− αδ(1− τr)] + µ{[1− δ(1− β)]− αβδ(1− τr)}

αβδ(1− δ)(1− τr)
(1 + θ)− 1 (A19)

Finally, these equations substitute (A8), (A10) and (A14), and we obtain:

s =
βδ(µ+ δ)

βδ + µ[1− δ(1− β)]
(1− τr)

l̄∗ = J(k̄, m̄) =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

.

These equations are the same to (14) and (15).
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By definition 1, we must satisfy (13). Therefore, the following equation is satisfied:

B + ln(m+ θm̄)− ln m̄+D ln k̄ + E ln(k + F k̄)

= δ[B +D ln sα+ E lnE −D ln] + (1− δ) ln(1− sα) + [1 + δ(D + E)] lnA

+ µ[lnµ− ln(1− τw)− ln(1− α)] + δ(1 + E) lnβδ + (µ+ δ + δE)[lnα+ ln(1− τr)]

− ln(1 + θ) + {αµ+ (1− α)[1 + µ+ δ(D + E)]} ln l̄

+ ln(m+ θm̄)− ln m̄+ [α− δ − (1− α)(µ+ δE) + αδD − αµ] ln k̄

+ (µ+ δ + δE) ln

{
k +

[
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

]
k̄

}
. (A16)

From this equation, we obtain:

E = µ+ δ + δE → E =
µ+ δ

1− δ
(A17)

D = α− δ − (1− α)(µ+ δE) + αδD − αµ → D =
α(1− δ)− (1− αδ)(µ+ δ)

(1− αδ)(1− δ)
(A18)

F =
[(1 + E)βδ + µ](1 + F )(1 + θ)

αβδ(1− τr)[(1 + F ) + E(1 + θ)]
− 1

→ F =
βδ[1− αδ(1− τr)] + µ{[1− δ(1− β)]− αβδ(1− τr)}

αβδ(1− δ)(1− τr)
(1 + θ)− 1 (A19)

Finally, these equations substitute (A8), (A10) and (A14), and we obtain:

s =
βδ(µ+ δ)

βδ + µ[1− δ(1− β)]
(1− τr)

l̄∗ = J(k̄, m̄) =
1− α

1− α+ 1+θ
βδ(1−τw)µ(1− sα)

.

These equations are the same to (14) and (15).
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These equations are the same to（14）and（15）.
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