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Abstract

A positronium-atom system can be considered as a diatomic molecule. From this perspective, 

diatomic molecule-like configuration interaction (CI) wave functions of positronium-atom systems 

are constructed. The diatomic molecule-like CI wave functions have forms corresponding to Hartree-

Fock and CI wave functions of diatomic molecules. The diatomic molecule-like CI wave functions are 

examined for positronium fluoride (PsF), and their advantages are discussed in this work.

1. INTRODUCTION

The positron is the anti-particle of the electron and the bound state it makes with the electron is 

called positronium (Ps), which is a hydrogen-like atom. The positronium makes bound states with 

various atoms, which are referred to as positronium-atom systems.

Quantum mechanical calculations of positronium-atom systems have been carried out since the 

1950’s, have noted the incorporation of inter-particle correlation effects into the wave functions. 

In particular, the inclusion of positron-electron correlation effects is very important. The simplest 

positronium-atom system is positronium hydride (PsH), which is a three-body system in Coulomb 

potential field of the proton. Hence, the calculations of wave functions with inter-particle distances 

are feasible. These wave functions are Hylleraas-type functions, explicitly correlated Gaussian 

functions, and so on, and these are known to give very accurate results. However, it is very difficult 

to calculate such wave functions for many-electronic positronium-atom systems.

For many-electronic positronium-atom systems, the Hartree-Fock (HF) method1–3, configuration 

interaction (CI) method4–8, variational perturbation theory9,10, and Quantum Monte Carlo11 are 

used. In particular, the CI method is a standard method for quantum mechanical calculations of 
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atomic systems, and it is suitable for many-electronic positronium-atom systems. Unfortunately, 

the convergence of CI wave functions is very slow, because the effects of higher angular momentum 

λ  of orbitals and of the many-body excitation are large. This is a disadvantage for the CI method. 

However, it is usually used due to the simple form of the CI wave function. As an approximation to 

the complete CI calculations, multireference singly and doubly excited CI (MRSDCI) may be useful.

CI calculations of positronium-atom systems are usually performed taking the systems as atoms, 

i.e. one-center expanded wave functions are calculated. A positronium-atom system is considered 

as a diatomic molecule of Ps and an atom (X), denoted as PsX. CI wave functions for PsX can be 

estimated using the method adopted for diatomic molecules. Quantum mechanical calculations 

for diatomic molecules are performed using two-center expanded wave functions. For diatomic 

molecules, first HF calculations are performed, and then singly and doubly excited CI (SDCI) 

calculations are carried out. Further, the singly, doubly, triply, and quadruply excited CI (SDTQCI) 

method or multireference SDCI (MRSDCI) method, which is an approximation to SDTQCI, is 

employed. This work provides CI wave functions for PsX as diatomic molecular wave functions, i.e. 

diatomic molecule-like CI wave functions. Moreover, the wave functions for positronium fluoride 

(PsF) are examined.

The next section provides diatomic molecule-like CI wave functions of PsX. The third section 

sets out details of the test calculations for the diatomic molecule-like CI wave functions. The fourth 

section summarizes and discusses the results of the test calculations.

2. WAVE FUNCTIONS

To express the given CI wave functions for PsX, two excitation operators are defined. The first 

one is the n-electron excitation operator Tn
−, and the second is the n-body (one-positron and (n−1)-

electron) excitation operator Tn
+; for example, T1

+ and T2
+ are one-positron and positron-electron pair 

excitation operators, respectively.

A PsX wave function corresponding to a diatomic molecular HF wave function includes only 

positron-electron correlation effects. We refer to this wave function as the positron-electron 

correlated HF (pec-HF) one, and it is written as

Ψpec-HF = (1 + T2
+)Φ0 , (1)

Here, Φ0 is a wave function consisting of variationally optimized occupied orbitals. These 

optimized occupied orbitals include positron-electron correlation effects. The binding energy (BE) 



Diatomic molecule-like configuration interaction wave functions of positronium-atom systems 29

for pec-HF calculations is estimated as follows: 

BE = E (Ps) + EHF (X) − Epec-HF (PsX) , (2)

where E(Ps) is the energy of positronium (−0.25 hartree), EHF (X) is the HF energy of atom X, and 

Epec-HF (PsX) is the pec-HF energy.

Similarly, the wave function of PsX corresponding to a diatomic molecular SDCI wave function has 

configurations which one-positron, one-electron, and two-electron excited from the pec-HF wave 

function. We refer to this wave function as the positron-electron correlated SDCI (pec-SDCI) and it 

is written as

Ψpec-SDCI = (1 + T1
− + T1

+ + T2
− ) Ψpec-HF . (3)

One-positron excitation describes the effect equivalent to the change of the nuclear distance of 

diatomic molecules. Eq.(3) can be rewritten using Eq.(1) as follows:

Ψpec-SDCI  = (1 + T1
− +T1

+ + T2
− + T2

+ + T3
+ + T4

+ ) Ψpec-HF  (4)

 = (1 + T1
− +T1

+ + T2
− + T2

+ ) Φ0 + ( T3
+ + T4

+ ) Φ0 . (5)

The first parenthesis part on the right hand side of Eq.(5) is the same as the SDCI wave function of 

the HF reference configuration, i.e. the ordinary SDCI. The pec-SDCI wave function is equivalent 

to the ordinary SDCI with the addition of three- and four-body excitations including one-positron 

excitation. The binding energy for pec-SDCI calculations is given by

BE = E (Ps) + ESDCI (X) − Epec-SDCI (PsX) , (6)

where ESDCI (X) is the SDCI energy of X and Epec-SDCI (PsX) is the energy estimated from the 

pec-SDCI wave function.

The wave function corresponding to SDTQCI of diatomic molecules is given by the positron-

electron correlated SDTQCI (pec-SDTQCI) wave function:

Ψpec-SDTQCI = Ψpec-SDCI + ( T3
− + T4

− ) Ψpec-HF  (7)

 = Ψpec-SDCI + ( T3
− + T4

− + T5
+ + T6

+ ) Φ0 . (8)

Five- and six-body excitations (including one-positron excitation) appear in the pec-SDTQCI 

wave function and it is difficult to calculate such many-body excited wave functions. Hence, as an 

approximation to pec-SDTQCI, pec-MRSDCI wave functions are considered. The binding energy for 

pec-SDTQCI is written as
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BE = E(Ps) + ESDTQCI (X) − Epec-SDTQCI (PsX) , (9)

where ESDTQCI (X) is the SDTQCI energy of X and Epec-SDTQCI (PsX) is the pec-SDTQCI energy.

3. COMPUTATIONAL ASPECTS

In this work, we carried out pec-HF and pec-SDCI calculations for positronium fluoride (PsF). 

We employed HF wave function as Φ0 in pec-HF calculations. To include the relaxation effects of 

positronic and electronic orbitals, we calculated pec-HF wave functions considering only the single 

excitations. These wave functions are the ordinary SDCI wave functions without two-electron 

excitations.

The reference configuration for the pec-SDCI wave function comprises of natural orbitals 

(NOs) obtained from pec-HF calculations. As NOs are not calculated variationally, these pec-SDCI 

calculations do not give variational energies. We estimated the pec-SDCI energy by adding the energy 

lowering of pec-SDCI to the pec-HF energy calculated with occupied HF orbitals. The pec-SDCI 

calculations must be carried out with the reference space consisting of all configurations of pec-HF 

wave function. However, these calculations are not feasible. In this work, we carried out pec-SDCI 

calculations with the reference space consisting of configurations having weight greater than 10−4.

An atomic orbital with angular momentum λ  can be written using the radial function Pnλ (r) and 

the spherical harmonics Yλ
m (θ , ϕ) as follows:

ψnλm (r, θ , ϕ) = r−1 Pnλ (r)Yλ
m (θ , ϕ) . (10)

In this work, all radial functions expressed as linear expansions with the B-splines. The B-splines of 

order K, { Bi,K }, are piecewise polynomials of degree K − 1 on a knot sequence in a cavity of radius 

R12,13. The knot sequence { ti } is a set of points defined on an interval 0 ≤ r ≤ R. Several methods 

that generate the knot sequence are proposed by Gilbert and Bertoncini14. In atomic calculations, 

the knot sequence that concentrates near the nucleus is required because the atomic orbitals rapidly 

change near the nucleus. Hence, an exponential14 or a geometric series15 knot sequence is suitable for 

atomic calculations. This work employed an exponential knot sequence. The radial function Pnλ (r) 

is expanded with the B-splines and enforces the boundary conditions Pnλ (0) = 0 and Pnλ (R) = 0. 

Since the first and the last terms of the B-splines with K-fold multiple knots are nonzero at r = 0 and 

at r = R, respectively, they are removed from the basis function to satisfy the boundary conditions. 

Pnλ is expanded with the N-term B-spline set (B2,K , · · · , BN+1,K). This work used a 100-term B-spline 
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set with K = 9, R = 60 au, and R1 = 10−3 au for all calculations, where R1 is the initial interval of the 

knot sequence.

The orbital sets used are listed in TABLE 1. pec-HF calculations employed the HF orbitals for the 

electronic orbitals 1s, 2s, and 2p and the positronic orbital 1s+. Further, NOs obtained from pec-HF 

calculations were employed for correlating orbitals. All orbitals used for pec-SDCI calculations were 

the NOs obtained for pec-HF calculations.

4. RESULTS AND DISCUSSION

We performed pec-HF calculations for PsF by using orbital sets listed in TABLE 1. These 

calculations are denoted as pec-HF(λmax ), where λmax is the maximum angular momentum of 

the orbital set used. TABLE 2 summarizes the pec-HF energies Epec-HF (PsF) and the binding 

energies (BE) values. The BEs were calculated using EHF (F) = −99.409349 hartree16. The energy 

contribution from the orbitals having angular momentum greater than 9 (Eλ>9) were estimated using 

an extrapolation method. FIG.1 shows the energy contribution from the respective λ-NOs, on a log-

log scale. It reveals that the energy contribution by adding λ-NOs (ΔEλ) converges linearly at λ ≥ 6. 

This correlation can be expressed as

−ΔEλ = aλ−b , (11)

where a and b are the fitting parameters. We obtained a=0.566023 and b=3.452499. The value of b is 

large. It shows that positron-electron correlation energies against λ  converge very slowly. The energy 

contribution Eλ>9 was estimated as

TABLE 1. Orbital sets used in all calculations. λmax is the maximum angular momentum value of orbital sets.

λmax Orbital set

1 30s30p

2 30s30p30d

3 30s30p30d30f

4 30s30p30d30f20g

5 30s30p30d30f20g20h

6 30s30p30d30f20g20h20i

7 30s30p30d30f20g20h20i10k

8 30s30p30d30f20g20h20i10k10l

9 30s30p30d30f20g20h20i10k10l10m
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Eλ>9 =    ΔEλ , (12)

and Eλ>9 = −0.000920 hartree was obtained.

Let us discuss the relaxation effects of orbitals due to positron-electron correlation effects. FIG.2 

shows the 1s-, 2s-, 2p-, and NOs obtained from pec-HF(9) calculations together with the HF orbitals. 

One can infer from FIG.2 that the 1s+ orbital shrinks. The shapes of the electronic orbitals have also 

changed, and their change is smaller than that of the positronic orbital. To see these changes in 

detail, the charge density difference Δ ρ  of each orbital given below has been plotted in FIG.3,

∞

∑
λ=10

TABLE 2.  Total energies (Epec-HF) and binding energies (BE) of PsF given by pec-HF calculations. λmax is 

the maximum angular momentum value of orbital sets.

λmax Epec-HF (hartree) BE (eV)

1 −99.651643 −0.2097

2 −99.676657 0.4710

3 −99.685723 0.7177

4 −99.689755 0.8274

5 −99.691818 0.9150

6 −99.692976 0.9337

7 −99.693664 0.9456

8 −99.694099 0.9533

9 −99.694384 0.9533

∞ −99.695304a 0.9784
a Extrapolated value.

FIG. 1. Energy contribution from the respective λ orbitals.
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Δ ρ(ρ) = ρpec-HF (r) − ρHF (r), (13)

where ρpec-HF (r) and ρHF (r) are the charge densities of orbitals obtained from pec-HF and HF 

calculations, respectively.

FIG. 3. Charge density differences of natural orbitals from HF orbitals.

FIG. 2. HF orbitals and pec-HF natural orbitals.
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 A large change in the charge density of 1s+ is noted. The value of 1s+ charge density increases at 

r = 1.92 au, and it decreases at r = 6.35 au. This change is large for calculations with orbitals having 

higher angular momentum. This indicates that the introduction of positron-electron correlation 

effects is important. As evident from FIG.2, pec-HF calculations must use orbitals having λ ≥ 3 in 

order to calculate charge density of 1s+ as correctly as possible.

The differences in electronic charge densities are smaller compared to the positronic charge 

density difference. For 1s and 2s, the pec-HF(1) calculation gives a larger change in the charge 

densities. The charge densities obtained from pec-HF(2) change smaller than those obtained from 

pec-HF(1) wave function. The pec-HF(1) calculation gives incorrect charge densities of 1s and 2s 

orbitals. Thus, it is important to introduce the angular correlation effects again.

The interaction of the positron and the 2p-electron is large because the 2p electron is in the 

outermost shell. However, the 2p charge density difference is smaller than that of 1s and 2s. The 

charge density obtained from the pec-HF(9) calculation increases at r = 2.70 au. The 2p charge 

density difference obtained from the pec-HF(1) attains a maximum value at r = 4.28 au. The 

pec-HF(1) also gives an incorrect charge density of 2s orbital. Therefore, accurate calculations of the 

pec-HF need the orbital set of λmax ≥ 2.

From the above results, we can infer that it is desirable to develop a self-consistent field method 

(SCF) of pec-HF wave functions because the relaxation effects of positronic and electronic orbitals 

are large. This SCF method is employed to variationally optimize only occupied orbitals, i.e. a 

restricted multiconfigurational SCF method. The pec-SDCI calculation was carried out with the 

reference space consisting of NOs with λmax = 9. This calculation is denoted by pec-SDCI(9). The 

dimension of the reference space and of the wave function is respectively 18 and 4,204,291 in 

this calculation. The resulting energy lowering from the pec-HF calculation with occupied NOs is 

−0.364877 hartree. The pec-SDCI(9) energy is estimated by adding the pec-HF(9) energy and the 

energy lowering. As a result, Epec-SDCI = −100.058712 hartree is obtained. This value is due to the 

introduction of two-electron excitations into pec-HF(9) wave function. Namely, correlation effects of 

four-body consisting of one-positron and three-electron is very important.

TABLE 3 lists the binding energies (BE) obtained in this work together with other works. The 

BE of pec-HF(9) is 33 % of the experimental value17. The pec-SDCI(9) calculation gives 2.480 eV of 

the BE, and it is 86 % of the experimental BE value. This shows the necessity of electron-electron 

correlation effects. The BE value of 2.480 eV obtained from the pec-SDCI(9) calculation is lower than 

that of SDCI5, and this value is almost the same as that of MRSDCI7. This is due to the correlation 

effects of four-body consisting of one-positron and three-electron. Although MRSDCI calculations 
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considers four-electron excited effects, the 

pec-SDCI calculation neglects those effects. 

The pec-SDCI calculation is the same as 

the SDCI calculation of diatomic molecules. 

Hence, it is very important to consider four-

body including one-positron effects for CI 

calculations of PsX.

Conf igurat ions  having two-e lectron 

excitations 2p2 → 3p2 and 2p2 →  3p4p have 

large weight in the pec-SDCI wave function. 

Including these configurations, four-electron 

correlation effects can be introduced to wave 

functions. Calculations of such wave functions 

may give more accurate BE values, and 

therefore pec-SDTQCI calculations need to be 

carried out. However, pec-SDTQCI wave functions must be calculated approximately, because they 

include up to six-body excited configurations. Therefore, it may be practically important to perform 

pec-MRSDCI calculations with reference spaces consisting of principal configurations of the pec-

SDCI wave functions.
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TABLE 3. Binding energies (BE) of PsF.

BE (eV)
This work
 pec-HF(9) 0.9533
 pec-HF(9) + higher λ 0.9784
 pec-SDCI(9) 2.455
 pec-SDCI(9) + higher λ 2.480
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bSaito (Ref.5); B-spline orbital set with λmax = 8.
cSaito (Ref.7); B-spline orbital set with λmax = 8.
dSchrader et al. (Ref.11)
eTao and Green (Ref.17)




