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Abstract

Multicore parallelization is detailed, for a program named MIPOWQ, that determines a single 

eigenvalue and the corresponding eigenvector of a dense real symmetric matrix on the basis of 

Fortran quadruple precision (REAL*16) arithmetic. This program was developed by combining 

the inverse power method and the modified Cholesky decomposition, and it gives high parallel 

performance in the OpenMP environment. In particular, it achieves 7.79 times speedup in 8-thread 

parallel execution for the Frank matrix of dimension 10000. This enhanced performance is due 

to the simplicity of the inverse power method and the full use of processing units for quadruple 

precision arithmetic. A further program is provided, known as JENNFQ, which determines a subset 

of eigenvalues and eigenvectors by the Jennings simultaneous iteration method. These two programs 

would present good examples of parallelization by OpenMP although the adopted algorithms are 

rather classical.

Keywords: ‌�REAL*16 • Eigenvalue problem • Inverse power method • Modified Cholesky 

decomposition • OpenMP • IEEE754

Program Summary

Program Title: MIPOWQ

Programming language: Fortran 2003

Licensing provisions: The MIT License

Computers: Any machine with a Fortran compiler supporting quadruple precision arithmetic (tested 

for Intel Fortran, Fujitsu Fortran, and gfortran)

Operating Systems: Linux (tested on CentOS 7.5, RedHat 6.5, and Fedora 24)

High speed storage required: Approximately N 2 + 2N quadruple precision words, where N is the 
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matrix dimension.

No. of bits in a word: 32

No. of lines in combined program and test deck: 1942

No. of bytes in distributed program, including test data, etc.: 18973

Distribution format: tar.gz

Nature of physical problem: Eigenvalue problem

Method of solution: The inverse power method. The modified Cholesky decomposition.

Typical running time: The eigenvalue of smallest magnitude and the corresponding eigenvector 

of the 10000 × 10000 Frank matrix can be obtained within 620 sec wall-clock time on the Intel Xeon 

processor (3.7 GHz) via 8-thread parallel execution.

1. Introduction

Eigenvalue problems appear often in scientific computations. Accuracy greater than double 

precision is needed in some computations.1–6 Programs tackling the eigenvalue problem exist as 

modules in almost all mathematical program libraries, but it is hard to find any that are capable of 

working in quadruple precision arithmetic (QP, IEEE754-2008 7). In particular, Intel Math Kernel 

Library (MKL8) does not release a quadruple precision version.

We address this need by using Fortran quadruple precision (REAL*16). If there is a source 

program which uses double precision, it is then easy to rewrite it to the quadruple precision version. 

However, quadruple precision arithmetic takes an order of magnitude greater computational time 

than double precision arithmetic.

To avoid this difficulty, double-double (DD) arithmetic was proposed by Bailey.9 On the basis of 

DD arithmetic, a basic matrix operation program library (QPBLAS) and eigenvalue problem package 

(QPEigen) have been developed by Yamada et al.10 They reported that computational times were 

reduced by a factor of 10 compared to the IEEE754 quadruple precision version. A similar DD 

program library (ASLQUAD11,12) has been provided by NEC Co. In addition, a DD and quad library 

named lis has been provided by Nishida’s group.13

There are still cases in which the number of digits of the exponent is inadequate, however. The DD 

arithmetic does not work in such situations. Instead, we simply use Fortran REAL*16, which ensures 

the portability of the program and facilitates maintenance.

In this paper we present two programs. These are called MIPOWQ and JENNFQ. The MIPOWQ 

program is a new development. It determines an eigenvalue and the corresponding eigenvector of 
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a dense real symmetric matrix. JENNFQ has been developed by converting the JENNFD program 

contained in NUMPAC (Nagoya University Numerical Package) library14,15 to quadruple precision, 

from double precision. (Y.H. is one of the authors of NUMPAC.) The JENNFQ program determines 

a subset of eigenvalues and eigenvectors. We have successfully gained high performance by 

multithreading. The advantages of these two programs will be made clear by comparing them with 

other eigenvalue programs based on other algorithms.

To date, we have used existing subroutine libraries of double/quadruple precision arithmetic 

contained in the open-source NUMPAC program library14,15 to solve problems in physics.1,2 In 

particular, we developed a program named SCELTO_gauss for single-center expansion of the 2Sg 

wavefunction of the hydrogen molecular ion (H2
+) using Laguerre-type orbitals (LTOs). We obtained 

wavefunctions with an error in the energy of less than 10–6 a.u.16 by expanding the wavefunction with 

LTOs up to the quantum numbers n = 203 and l = 202. The Hamiltonian is a dense matrix of size 

10404 × 10404. The proportion of elements having an absolute value greater than 10–30 is 92%. The 

diagonalization stage took 10.5 hours (38146 sec) on an Intel Core i7-3970X (3.50 GHz) processor. To 

reach convergence to the exact solution, quadruple precision arithmetic was necessary.

Much CPU time was taken in generating the Hamiltonian of size 10404 × 10404; this took 189 hours 

(682394 sec) in serial mode. We optimized the orbital exponent (z l) by varying it about 10 times for 

each quantum number l while increasing l from 0 to (n–1). In this way we confirmed the convergence 

of the total energy to the exact value. Since we diagonalize the Hamiltonian many times during a 

solution, the eigenvalue problem took 50% of the entire computation. The SCELTO_gauss program 

uses HOBSVQ in NUMPAC as an eigensolver. The HOBSVQ subroutine is used for determining a subset 

of eigenvalues/eigenvectors by means of the Householder transformation and the bisection method. 

If the eigenvalue problem can be solved more efficiently, more LTOs can be used and more accurate 

results obtained. This is why we decided to develop more efficient eigensolvers. For parallelization, 

we use OpenMP.17,18

We have developed eigensolvers, based on the following points.

(1)	As the number of significant digits in double precision (16 digits) proved insufficient for the 

quantum number n>20 for the H2
+ calculations,1,2 we require accuracy of significant digits over 

20.

(2)	The eigenvalue smallest in magnitude is determined for a dense real symmetric matrix.

(3)	Multicore parallelization is to be implemented for speedup.
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At the beginning of program development, we adopted the QD library9 and achieved speedup by a 

factor of 3 compared to the serial HOBSVQ. (In QD, two double precision numbers are combined and 

the mantissa has 2 × 2 = 4 precision; the exponent is in the same range as a double precision number 

(10±308)). As the number of digits of the exponent is inadequate for calculation of the Hamiltonian, we 

decided to write a program without resorting to QD library. Regarding points (2) and (3) above, Intel 

MKL contains excellent eigensolvers such as dsyevx, dsyevd, but quadruple precision versions 

are not available at present. These reasons are why we developed a parallel eigensolver of quadruple 

precision (REAL*16).

The eigenproblem in this case is to obtain a vector x which satisfies Ax = lx where A is a dense 

real symmetric matrix. Two methods are:

(1)	MIPOWQ: The inverse power method.19,20

	 Using modified Cholesky decomposition (LDLT factorization20), followed by repeated forward 

substitutions and backward substitutions, the eigenvalue smallest in magnitude, and the 

corresponding eigenvector, are obtained in a set. An arbitrary eigenvalue can be determined by 

subtracting its approximate value from the diagonal elements of the matrix.

(2)	JENNFQ: The Jennings simultaneous iteration method.21,22

	 A limited subset of eigenvalues, including the smallest (or largest) in magnitude, and their 

corresponding eigenvectors, are determined. The subroutine JENNFQ was made by converting 

the subroutine JENNFD14,15 in NUMPAC to quadruple precision, from double precision, and by 

parallelizing it by inserting an OpenMP directive.

For diagonalizing large sparse real symmetric matrices, other methods such as the Davidson 

method23 have been developed especially for diagonal dominant cases. The Davidson method is 

applied to large configuration interaction (CI) calculations. Nowadays eigenvalue problems of 

dimension over one billion are solved in the area of molecular physics and chemistry.24 By Sleijpen 

and van der Vorst,25 the Davidson method was extended to more general cases and the convergence 

rate was improved. Their method is called the Jacobi-Davidson method.

2. Algorithm

The power method used in MIPOWQ and the simultaneous iteration method used in JENNFQ 

are both based on algorithms which give the eigenvalue largest in magnitude. To determine the 
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eigenvalue of least magnitude, an eigenvalue problem of the inverse matrix (A–1) is to be solved, i.e., 

A–1 x = (1/l) x. Then the inverse of the maximum absolute eigenvalue of A–1 gives an eigenvalue 

of A. An arbitrary eigenvalue can be determined by subtracting its approximate value (s) from the 

diagonal elements of A in advance.

The detailed procedure is as follows. At first, setting an approximate value (s), we obtain r1 (the 

largest eigenvalue in magnitude) by solving the eigenvalue problem ((A – sI)–1 v = r1 v). From 

the equation A v = (1/r1 + s) v, we obtain (1/r1 + s) as the eigenvalue closest to s, and v as the 

corresponding eigenvector.

(1)	MIPOWQ

	 The power method associated with a Rayleigh quotient is employed to accelerate convergence. 

The matrix A is decomposed by the modified Cholesky decomposition. Then the inverse power 

method is applied; this is followed by the solution method for simultaneous linear equations, 

which is associated with forward substitutions and backward substitutions. Convergence is 

judged by fluctuation of the eigenvectors.

	 The numbers of arithmetic operations in MIPOWQ are N 3/3 + N 2 – 5N/6 for the modified 

Cholesky decomposition, and 2N 2 – N for the forward/backward substitutions. Thus the total 

number of operations becomes N 3/3 + N 2/2 + cycle × 2N 2 + O(N), where ‘cycle’ denotes the 

number of iterations before convergence is attained.

	 In total, three OpenMP directives are inserted in the code. One is at the modified Cholesky 

decomposition, and the others are at the forward/backward substitutions.

	 MIPOWQ demands memory of minimum size, i.e., matrix A, eigenvector v, and a 1-dimensional 

array of size N. The total memory required is 16(N 2 + 2N) bytes.

	 The procedure is described in detail in Appendix B.

(2)	JENNFQ

	 Details of the algorithm are given in Ref.21,22. An OpenMP directive is inserted in the modified 

Cholesky decomposition portion. The large arrays required are the matrix A, eigenvector v, and 

a 1D working area of size 3N.

3. Performance

3.1 Test matrices

The Frank matrix26 of dimension N is used for test calculations. Its elements are defined as  
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ai,j = N + 1 – MAX(i, j). Its exact eigenvalues are given by the following formula.

� (1)

The error is represented by err(lN’) = | lN’ – lN |, where lN’ is the calculated value of the eigenvalue. 

We tested the cases N = 1000, 2000, and 10000. We assigned a value of 0.25 to s (an approximate 

value for lN.

3.2 Computational environment

The host computer used for the benchmark test is a w2145. As detailed in Table C.6, it has a CPU 

unit comprising an Intel Xeon W-2145 (clock-rate 3.70 GHz) with 3rd cache (last level cache, LLC) 

of 11 MB, 8 cores, HTT (hyper-threading technology),18 and TBT (turbo boost technology).27,28 The 

Intel Fortran compiler is used, and the following compiler options are specified.

-O3 -xHost -mcmodel=small -qopenmp -ip

We bind OpenMP threads and hardware threads using the following environment variable, which is 

available under the Intel Fortran environment.

KMP_AFFINITY=verbose,granularity=fine,scatter

Details of the binding method will be described in Subsection 3.5.

3.3 Accuracy

In this subsection we discuss the accuracy19,20 of the computational results. The errors (err(lN’)) 

in the eigenvalues, and errors (err(xN’)) in the eigenvectors are set out in Table 1.

The convergence criterion (EPS) is set at 10–25. For MIPOWQ and JENNFQ, convergence is judged 

by the fluctuation of the eigenvector. For HOBSVQ, a tight convergence criterion (EPS = 10–34) on the 

eigenvalue is adopted.

Table 1.	 Errors in the eigenvalues and eigenvectors of the Frank matrices diagonalized by MIPOWQ / 

JENNFQ. (The degree of parallelism is 1.)

MIPOWQ (EPS = 10–25) JENNFQ (EPS = 10–25)

N Iter.* err(lN’) err(xN’) Iter.* err(lN’) err(xN’)

1000 30 1.54E-31 2.00E-30 29 1.54E-31 2.58E-30

2000 38 1.66E-31 1.99E-29 26 1.66E-31 1.10E-29

10000 37 3.84E-30 2.37E-28 29 3.84E-30 3.24E-28

* Number of iterations until convergence.
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Below, the exact eigenvalues for N = 1000, 2000, and 10000 are listed up to 35 digits.

	 l1000	 = 0.25000 06162 34899 77511 48137 94229 54161

	 l2000	 = 0.25000 01541 35554 74188 04357 05940 25200

	 l10000	 = 0.25000 00061 67886 04811 39811 77862 77643

The results of MIPOWQ and HOBSVQ (Householder-Bisection) are as follows.

	 l1000’	 = 0.25000 06162 34899 77511 48137 94229 69545

	 l2000’	 = 0.25000 01541 35554 74188 04357 05940 08631

	 l10000’	 = 0.25000 00061 67886 04811 39811 77858 93636

	 l1000’	 = 0.25000 06162 34899 77511 48137 94229 57252

	 l2000’	 = 0.25000 01541 35554 74188 04357 05940 16898

	 l10000’	 = 0.25000 00061 67886 04811 39811 77862 73877

The calculated eigenvalues of MIPOWQ are identical to the exact values up to 29 digits, and the 

errors are less than 10–30. Compared to the rounding unit (10–34) of quadruple precision defined by 

IEEE754,7 the loss of precision is 5 digits. The eigenvector has an accuracy of more than 28 decimal 

digits. The number of iterations in JENNFQ is less than that with MIPOWQ, indicating that the vector 

acceleration in JENNFQ works effectively.

3.4 Speed and parallel performance

Wall-clock times (elapsed times) taken to determine an eigenvalue and the corresponding 

eigenvector of the Frank matrices are set out in Table 2 (for MIPOWQ) and Table 3 (for JENNFQ).

We term the ratio of the wall-clock time of a 1-thread job to that of a multithread job the 

performance ratio (PR). In the case of MIPOWQ (N = 10000), the PRs are 1.99 for 2-thread, 3.78 for 

4-thread, and 7.45 for 8-thread. In the case of JENNFQ they are 1.95 for 2-thread, 3.57 for 4-thread, 

and 6.52 for 8-thread. (Only a single eigenpair is evaluated even for JENNFQ.) Thus the PR increases 

almost linearly with the number of threads. The PR of MIPOWQ is greater than that of JENNFQ. The 

PR values of MIPOWQ are shown as solid lines in Fig. 1. Dotted lines in Fig. 1 show PRs with TBT 

correction. The TBT correction will be explained in the next subsection.
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Table 2.	 Wall-clock time (sec) for diagonalizing the Frank matrices by MIPOWQ on w2145.

Number of threads

N 1 2 3 4 5 6 7 8

1000 5.74 3.05 2.23 1.77 1.50 1.30 1.18 1.07

2000 41.55 21.30 15.02 11.46 9.37 7.94 6.92 6.16

10000 4610.87 2321.39 1621.15 1219.89 979.68 819.20 704.66 619.31

Table 3.	 Wall-clock time (sec) for diagonalizing the Frank matrices by JENNFQ on w2145.

Number of threads

N 1 2 3 4 5 6 7 8

1000 5.52 3.27 2.60 2.21 1.97 1.82 1.71 1.61

2000 40.39 22.08 16.67 13.49 11.57 10.30 9.39 8.70

10000 4620.30 2371.41 1687.53 1295.48 1060.05 904.74 792.65 708.80

Here we compare wall-clock times between HOBSVQ (serial version) in NUMPAC used in Ref.1,2, 

and MIPOWQ. Wall-clock times for HOBSVQ for N = 1000, 2000, and 10000 are 26.73 sec, 226.33 sec, 

and 29395.27 sec. MIPOWQ is 6.4 times faster than HOBSVQ for 1-thread, and 47.5 times faster for 

8-thread in the case N = 10000.

The number of arithmetic operations for the Householder transformation19,20 in HOBSVQ is of the 

order of (4/3)N 3 (See Ref.20). The operations in the modified Cholesky decomposition in MIPOWQ 

Fig. 1.	 Parallel performance of MIPOWQ on w2145 for diagonalizing the Frank matrices. Red, blue, and 

black lines (in the order from the lowermost to the uppermost) refer to N = 1000, 2000, and 10000, 

respectively. Solid/dotted lines illustrate performance ratios without/with TBT correction.
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number about (1/3)N 3. Thus for large N, the number of operations will be about 4 times greater in 

HOBSVQ than in MIPOWQ. HOBSVQ takes more wall-clock time than expected from the number of 

arithmetic operations alone. This is because there is an array reference with a long stride in the code 

of HOBSVQ.

Here we compare the wall-clock time of double precision program MIPOWD derived from MIPOWQ 

and that of MIPOWQ. For N = 10000, they are 96 sec and 4611 sec, respectively. Therefore the ratio of 

the cost between double precision and quadruple precision is 48. This suggests that MIPOWQ is CPU-

bound, that is, arithmetic operations in the cores consume more time than data transfer between the 

cores and the main memory.

For N = 10000, the performance of MIPOWQ is 550 MFLOPS. Dongarra’s group29 obtained high 

performance for Cholesky decomposition in a similar computational environment by exploiting 

the tiled (or blocked) algorithms,29 which are optimal for the modern cache architecture. We 

provisionally implemented the blocked version of the modified Cholesky decomposition (dsytrs) 

and forward/backward substitutions (dsytrf) in LAPACK30 with MIPOWQ and evaluated its 

performance. The speedup was not so great (33% for 1-thread, 10% for 8-thread). For a higher 

degree of parallelism, the PR of the modified program is decreased. This is because the quadruple 

precision arithmetic in the present program is CPU-bound. We provide the programs coded without 

blocking because we prefer higher parallel performance and the simplicity of the code.

We conclude that, for evaluating a single eigenpair, MIPOWQ (the inverse power method) is 

superior to the Householder-Bisection method. To determine a limited subset of eigenpairs, JENNFQ 

(the simultaneous iteration method) is advantageous. In the case of MIPOWQ, for large N, the 

modified Cholesky decomposition becomes the dominant step in the computation, and the number 

of operations is approximately (1/3)N 3.

The wall-clock time for diagonalizing the H2
+ Hamiltonian described in our Introduction has been 

reduced from 38146 sec (serial HOBSVQ) to 7374 sec by 1-thread execution (MIPOWQ), and to 1350 

sec by 6-thread.

3.5 Scalability

We now consider the scalability of the MIPOWQ program by exploiting TBT.27,28 TBT dynamically 

varies the clock-rates of cores. When only a single core is working, TBT increases the clock-rate over 

the base frequency, and when multiple cores are working it slows their clock-rates to reduce heat 

generation. TBT is available on the Intel Xeon W-2145 of the computer systems used (w2145).

The measured parallel performance (solid lines in Fig. 1) shows deceleration of growth as 
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the number of threads increases. This is not easy to interpret, because TBT contributes to this 

deceleration. Consequently, we estimate the parallel performance assuming that the clock-rate is 

constant even for multithread execution. We call this compensation for parallel performance TBT 

correction. TBT correction will now be discussed.

Under the Intel Fortran environment, a binding method between OpenMP threads and hardware 

threads can be specified by the environment variable KMP_AFFINITY. If “scatter” is specified for 

this variable, the threads are distributed as evenly as possible across the entire system. For example, 

in the 2-thread parallel mode, the first thread is bound to the first core of the first CPU unit, and the 

second thread is bound to the first core of the second CPU unit. The frequency31 of the Intel Xeon 

W-2145 is listed in Table 4; the cores operate at 4.5 GHz until there are 2 threads, and at 4.3 GHz 

for 3 threads or more. Assuming that the performance of each core is proportional to the frequency, 

we compensate for the ostensible deceleration of performance by multiplying by 1.0 for 1–2 thread, 

(4.5/4.3) for 3–8 threads. Table 5 gives the PRs without/with TBT correction. The dotted lines in 

Fig. 1 show the corrected PRs. The corrected PR of MIPOWQ reaches 7.79 in the 8-thread case, 

suggesting high scalability of MIPOWQ.

Table 4.	 Turbo frequency (GHz) of the Intel Xeon W-2145.

Number of working cores

1 2 3–8

Turbo frequency 4.5 4.5 4.3

Cited from Ref.31.

Table 5.	 Performance ratio of MIPOWQ (N = 10000) corrected by taking TBT into account.

TBT Number of threads

Hostname correction 1 2 3 4 5 6 7 8

w2145 Without 1 1.99 2.84 3.78 4.71 5.63 6.54 7.45

w2145 With 1 1.99 2.98 3.96 4.93 5.89 6.85 7.79

CX2 Needless 1 1.99 2.97 3.95 4.93 5.88 6.85 7.79

We have measured the performance on a different computer system (CX2). The specifications of 

this system are listed in Table C.6 of Appendix C. The Intel Xeon E5-2697V2 is mounted on the 

CX2, with the Intel Xeon Phi 3120P co-processor attached. Wall-clock times for MIPOWQ are listed 

in Table D.7 in Appendix D, and plotted in Fig. D.2. The wall-clock times for JENNFQ on CX2 are 

given in Table D.8. For MIPOWQ the PR for the 8-thread case and N = 10000 is 7.79. Amdahl’s law18,32 

is expressed by the following formula:
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� (2)

By substituting 7.79 for PR and 8 for p (the degree of parallelism) into Eq.(2), the value of a (the 

fraction of the parallelized code) is calculated to be 0.9961. This large value of a  implies high 

scalability of MIPOWQ. Since the Phi 3120P co-processor does not have TBT, its PRs can be compared 

directly with those for w2145. The PR value of 7.79 for CX2 is very close to the PR value (7.79) with 

TBT correction in the 8-thread case on w2145. This strongly suggests that the TBT correction we 

have proposed is appropriate and that MIPOWQ has high scalability.

Here we give other results of another machine (cluster) of 32 cores in total. The specifications of 

cluster is given in Table C.6 of Appendix C and the turbo frequencies in Table E.9 of Appendix E. 

The wall-clock times of MIPOWQ and JENNFQ are set out in Tables E.10 and E.11. PRs are 

plotted against number of threads in Fig. E.3. High scalability is shown also on cluster. Since the 

actual number of cores is 32, the PR descends sharply at 33-thread as shown in Fig. E.3. The PR 

for 64 threads is only slightly better than that of 32 threads, which can be attributed to HTT. It is 

recommended to run the program with the number of threads less than or equal to that of cores 

equipped actually.

3.6 Portability

We have tested the portability of the programs by executing them under the following 

environments: Intel Fortran version 19.0.1, Fujitsu Fortran version 1.2.0, and gfortran version 7.3.1 

(Intel Core i7-3970X, Linux Fedora 24).

4. Concluding remarks

We have developed two eigensolvers having quadruple precision (Fortran REAL*16) for dense 

real symmetric matrices, known as MIPOWQ and JENNFQ. MIPOWQ specifically determines a single 

eigenvalue (the smallest in magnitude), and the corresponding eigenvector is found by combining 

the inverse power method and the modified Cholesky decomposition. MIPOWQ exhibits high 

multithread parallelism in the OpenMP environment. The calculated eigenvalue has an accuracy of 

more than 28 decimal digits. For determining single eigenpairs, the inverse power method is superior 

to the Householder-Bisection method. JENNFQ determines a limited subset of eigenpairs, and has 

been developed by parallelizing the existing double precision JENNFD program in NUMPAC. Because 
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of the scarcity of quad-precision eigensolvers and the high parallel performance of the programs, we 

provide MIPOWQ and JENNFQ. The source program of MIPOWQ is listed in Appendix F. The full set 

of the source programs and the output files is available upon request to the corresponding author.

Author information

Professor Emeritus, Dr. Yasuyo HATANO

  Institute for Advanced Studies in Artificial Intelligence (IASAI), Chukyo University, 

    Toyota 470-0393, Japan.

  ORCID: 0000-0002-7914-8846

  Corresponding author: E-mail address: hatano@sist.chukyo-u.ac.jp

Professor, Dr. Shigeyoshi YAMAMOTO

  School of International Liberal Studies, Chukyo University, 

    101-2 Yagoto Honmachi, Showa-ku, Nagoya 466-8666, Japan

  Institute for Advanced Studies in Artificial Intelligence (IASAI), Chukyo University, 

    Toyota 470-0393, Japan.

  ORCID: 0000-0003-3780-534X

Acknowledgements

We used computers at IASAI of Chukyo University, and the computer system (CX2) at the 

Information Technology Center of Nagoya University. We thank Professor Emeritus Hiroshi Tatewaki 

of Nagoya-City University, Professor Emeritus Takemitsu Hasegawa of Fukui University, and 

Professor Hiroshi Sugiura of Nanzan University for critical reading of the manuscript. We are grateful 

to Professor Akiumi Hasegawa at Chukyo University for making the computers (cluster in particular) 

at IASAI available to us.

This research did not receive any specific grant from funding agencies in the public, commercial, 

or not-for-profit sectors.

Appendix A.  User’s manual for MIPOWQ and JENNFQ

call MIPOWQ(A, KA, VV, N, EIG, EPS, ITER, MITER, G, ILL)

call JENNFQ(A, KA, N, NE, NV, VV, EIG, C, W, EPS, ITER, ILL)
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Name Type | Input&Output | Contents

A real*16 | Input&Output | A 2D array.  A dense real symmetric matrix. s  should be subtracted 

from the diagonal elements in advance. For MIPOWQ, components of the modified Cholesky 

decomposition are to be stored in the upper triangle.

KA integer | Input | The adjustable dimension of A/VV.

VV real*16 | Input&Output | A 1D/2D array for MIPOWQ /JENNFQ. Input initial values of eigenvectors.

N integer | Input | The dimension of A.

NE integer | Input | Input the number of eigenvalues to be evaluated by | NE  |. NE > 0 (NE < 0) indicates 

that eigenvalues are to be stored in descending (ascending) order of the absolute values.

NV integer | Input | The number of initial vectors.

EIG real*16 | Output | An eigenvalue (eigenvalues) is (are) to be stored. For JENNFQ, a 1D array of size 

| NE  |.
C real*16 | Work | A 1D working array of size NV × NV.

W real*16 | Work | A 1D working array of size 3N.

EPS real*16 | Input | A convergence criterion. 1.Q-25 is recommended.

ITER integer | Input&Output | For JENNFQ, input an iteration limit. The number of actual iterations is to 

be stored.

MITER integer | Input | An iteration limit.

G real*16 | Work | A 1D working array of size N.

ILL integer | Output | For normal end, zero is to be stored.

By inputting A, where s is subtracted from the diagonal elements in advance, whatever eigenvalue 

closest to s can be obtained as (s + EIG).

Appendix B.  Procedure of MIPOWQ

1. Set an initial vector v(0), a shift parameter s, and a convergence criterion e.

2. Set k = 0. Perform the modified Cholesky decomposition20 so that B = A – s I = LDLT, where 

L is a lower triangular matrix. The eigenvalue problem to be solved is B–1 v = r v. To obtain 

v(k+1) = B–1 v(k), solve the simultaneous equation B v(k+1) = v(k); in other words, solve B v(k+1) = 

v(k) → LDLT v(k+1) = v(k).

3. By forward substitutions, solve L y = v(k), and obtain y.

4. By backward substitutions, solve (DL)T v(k+1) = y, and obtain v(k+1).

5. Obtain r(k+1) from (v(k),v(k+1)) (an inner product of vectors).

6. Obtain normalized v(k+1) as v(k+1) / √(v(k+1), v(k+1)) .

7. If Σ
i |(vi

(k+1))2 – (vi
(k))2 | ≤ Ne then go to step 8; otherwise set k + 1 → k and go to step 3. Here, 

N is the dimension of matrix A.
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8. Obtain the eigenvalue r of B–1 as r(k+1), and the eigenvector as v(k+1). Then (s + 1/r) is obtained 

as the eigenvalue of A closest to s.

Appendix C.  Specification table of computer systems

The specifications of the computer systems used is listed in Table C.6.

Table C.6 Specifications of computer systems.

Hostname

w2145 CX2 (CX400/270) cluster

CPU Intel Xeon W-2145 Intel Xeon E5-2697V2 Intel Xeon E5-2683V4

+ Intel Xeon Phi 3120P

  (co-processor)

Architecture Skylake IvyBridgeEP / Broadwell

KnightsCorner

Clock-rate 3.70 GHz 2.70 GHz / 1.10 GHz 2.10 GHz

#Core/CPU 8 12 / 57 16

#CPU 1 2+1 2

LLC 11 MB 30 MB / 28.5 MB 40 MB

TBT Max 4.50 GHz Max 3.50 GHz / No Max 3.00 GHz

HTT Yes Yes Yes

AVX2 Yes Yes Yes

AVX-512 Yes No No

Main memory 128 GB 128 GB 64 GB

OS Linux Linux Linux

(distribution) CentOS 7.5 RedHat 6.5 CentOS 7.3

Fortran compiler Intel Fortran 19.0.1 Intel Fortran 15.0.5 Intel Fortran 18.0.1

(OpenMP 4.5) Fujitsu Fortran 1.2.0

Appendix D.  Performance on CX2

The wall-clock times for MIPOWQ and JENNFQ on CX2 are set out in Tables D.7 and D.8, 

respectively. The PR of MIPOWQ is shown in Fig. D.2.

Table D.7 Wall-clock time (sec) for diagonalizing the Frank matrices using MIPOWQ on CX2.

Number of threads

N 1 4 8 12 18 24

1000 10.58 3.05 1.91 1.50 1.27 1.15

2000 75.21 19.84 10.81 7.81 5.88 4.90

10000 8586.31 2174.26 1101.77 745.01 506.29 388.90
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Table D.8 Wall-clock time (sec) for diagonalizing the Frank matrices using JENNFQ on CX2.

Number of threads

N 1 4 8 12 18 24

1000 10.02 3.77 2.77 2.39 2.16 2.05

2000 72.22 22.71 14.62 11.94 10.17 9.32

10000 8467.85 2283.24 1251.82 907.07 675.96 567.21

Appendix E.  Performance on cluster

The wall-clock times for MIPOWQ and JENNFQ on cluster are set out in Tables E.9 and E.10, 

respectively. The PR of MIPOWQ is shown in Fig. E.2.

Table E.9 Turbo frequency (GHz) of the Intel Xeon E5-2683V4 of cluster.

Number of working cores

1–2 3 4 5–16

Turbo frequency 3.0 2.8 2.7 2.6

Table E.10 Wall-clock time (sec) for diagonalizing the Frank matrices using MIPOWQ on cluster.

Number of threads

N 1 4 8 16 32 64

1000 9.11 2.81 1.86 1.29 1.03 1.27

2000 64.72 18.00 10.70 6.20 4.06 4.54

10000 7403.38 2098.07 1097.60 562.26 298.01 288.45

Fig. D.2	 Parallel performance of MIPOWQ on CX2 for 

diagonalizing Frank matrices. Red, blue, and 

black lines are for N = 1000, 2000, and 10000, 

respectively.
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Table E.11 Wall-clock time (sec) for diagonalizing the Frank matrices using JENNFQ on cluster.

Number of threads

N 1 4 8 16 32 64

1000 8.67 3.45 2.73 2.23 1.97 3.23

2000 62.41 20.67 14.29 10.18 8.14 10.39

10000 7301.91 2076.75 1222.99 706.78 456.98 436.69

Appendix F.  Source program

Table F.12 Source program of MIPOWQ.

001       subroutine MIPOWQ(A, KA, X, N, EIG,

002      &  EPS, ITER, MITER, Y, IND)

003 !----------------------------------------------------------------------

004 !     Calculates the minimum absolute eigenvalue of the matrix A by the

005 !     modified power method.

006 !

007 !     Written by Yasuyo Hatano 2018-09-08

008 !     Modified by Shigeyoshi Yamamoto 2018-12-08 at Chukyo Univ.

009 !     Modified by Shigeyoshi Yamamoto 2018-12-09

010 !       4-factor loop unrolling for J.

011 !     Modified by Shigeyoshi Yamamoto 2018-12-10

012 !       The OpenMP directive is moved to just in front of the inner

013 !       loop of I.

014 !     Modified by Shigeyoshi Yamamoto 2018-12-15

Fig. E.3	 Parallel performance of MIPOWQ on cluster 

for diagonalizing Frank matrices. Red, blue, 

and black lines are for N = 1000, 2000, and 

10000, respectively. Solid/dotted lines illustrate 

performance ratios without/with TBT correction.
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015 !     Modified by Yasuyo Hatano 2018-12-26

016 !----------------------------------------------------------------------

017 !   Explanation of the arguments.

018 !     A     : A 2D matrix.  The lower triangle (except for the

019 !             diagonals) are kept unchanged.

020 !     KA    : The extent of the 1st dimension of the matrix A.

021 !     X     : Eigenvectors.  The initial vectors are to be input and

022 !             the resultant vectors are to be output.

023 !     N     : The length of the 1st index of the matrix A that is

024 !             actually referred.

025 !     EIG   : Eigenvalues are to be output.

026 !     EPS   : A constant for judging convergence.

027 !     ITER  : The number of iterations is to be output.

028 !     MITER : The limit for the iteration number is to be input.

029 !             This is initialized by 100 in the subroutine TESTSUB.

030 !     Y     : A 1D working array.

031 !     IND   : Resultant status is to be output.

032 !              IND=0     : Normal end

033 !              IND=30000 : Incorrect input values of the arguments.

034 !              IND=K     : Abnormal end because the pivot approaches

035 !                          zero at the K-th stage of elimination.

036 !----------------------------------------------------------------------

037       include 'MIT_license.txt'

038       implicit none

039       integer, intent(in) :: KA, N, MITER

040       integer, intent(out) :: ITER, IND

041       real(kind=16) :: EPS, EIG

042       real(kind=16), intent(inout) :: A(KA,KA), X(KA)

043       real(kind=16) :: Y(KA)

044 !----------------------------------------------------------------------

045       integer :: I, J, K

046       integer :: JEND

047       real(kind=16) :: SUMTMP, SUMM, ANORME, W

048       real(kind=16) :: AKJ, AKJ1, AKJ2, AKJ3

049 !----------------------------------------------------------------------

050 !   unrolling factor

051       integer :: JFACTOR = 4

052       real(kind=16) :: EPSZ = 1.q-34

053       intrinsic abs, max, sqrt

054 !----------------------------------------------------------------------

055 !     The original loop structure of the Modified Cholesky

056 !     decomposition (LDL^T) before loop unrolling.

057 !

058 !#    do K = 1, N

059 !#      do I = 1, K-1

060 !#        W = A(I,K)

061 !#        A(I,K) = W / A(I,I)

062 !#        A(K,K) = A(K,K) - A(I,K) * W
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063 !#      end do

064 !#      do J = K+1, N

065 !#        AKJ = A(K,J)

066 !# $OMP parallel do reduction(-:AKJ)

067 !#        do I = 1, K-1

068 !#          AKJ = AKJ - A(I,K) * A(I,J)

069 !#        end do

070 !#        A(K,J) = AKJ

071 !#      end do

072 !----------------------------------------------------------------------

073       ITER = 0

074       if( N > KA .or. N < 1 .or. EPS <= 0.q0 ) then

075         IND = 30000

076         return

077       end if

078 !

079       SUMM = 0.q0

080       do J = 1, N

081         SUMTMP = 0.q0

082         do I = 1, N

083           SUMTMP = SUMTMP + abs(A(I,J))

084         end do

085         SUMM = max(SUMM,SUMTMP)

086       end do

087       ANORME = SUMM * EPSZ

088

089       SUMTMP = 0.q0

090       do I = 1, N

091         SUMTMP = SUMTMP + X(I) * X(I)

092       end do

093       SUMM = SUMTMP

094 !

095       SUMTMP = 1.q0 / sqrt(SUMTMP)

096       do I = 1, N

097         X(I) = X(I) * SUMTMP

098       end do

099       IND = 0

100 !

101 !     ...The Modified Cholesky decomposition (LDLT) starts.

102 !

103       do K = 1, N

104         do I = 1, K-1

105           W = A(I,K)

106           A(I,K) = W / A(I,I)

107           A(K,K) = A(K,K) - A(I,K) * W

108         end do

109 !

110         if( A(K,K) < ANORME ) then
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111           IND = K

112           write(6,"('A is ill-conditioned.  IND=',I5)") IND

113           return

114         end if

115 !

116         JEND = JFACTOR * ((N-K)/JFACTOR) + K

117 !$OMP parallel do

118         do J = K+1, JEND, JFACTOR

119           AKJ  = A(K,J)

120           AKJ1 = A(K,J+1)

121           AKJ2 = A(K,J+2)

122           AKJ3 = A(K,J+3)

123           do I = 1, K-1

124             AKJ  = AKJ  - A(I,K) * A(I,J)

125             AKJ1 = AKJ1 - A(I,K) * A(I,J+1)

126             AKJ2 = AKJ2 - A(I,K) * A(I,J+2)

127             AKJ3 = AKJ3 - A(I,K) * A(I,J+3)

128           end do

129           A(K,J)   = AKJ

130           A(K,J+1) = AKJ1

131           A(K,J+2) = AKJ2

132           A(K,J+3) = AKJ3

133         end do

134 !

135 !$OMP parallel do

136         do J = JEND+1, N, 1

137           AKJ = A(K,J)

138           do I = 1, K-1

139             AKJ = AKJ - A(I,K) * A(I,J)

140           end do

141           A(K,J) = AKJ

142         end do

143 !

144       end do ! K

145 !

146 !     ...End of the Modified Cholesky decomposition

147 !

148       do I = 1, N

149         Y(I) = X(I)

150       end do

151 !

152       do K = 1, MITER

153 !

154 !     ...Forward substitution

155 !

156         do I = 1, N

157           SUMTMP = 0.q0

158 !
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159 !$OMP parallel do reduction(+:SUMTMP)

160           do J = 1, I-1

161             SUMTMP = SUMTMP + A(J,I) * Y(J)

162           end do ! J

163           Y(I) = Y(I) - SUMTMP

164         end do ! I

165 !

166 !     ...Backward substitution

167 !

168         do I = N, 1, -1

169           Y(I) = Y(I) / A(I,I)

170 !

171           SUMTMP = 0.q0

172 !$OMP parallel do reduction(+:SUMTMP)

173           do J = I+1, N

174             SUMTMP = SUMTMP + A(I,J) * Y(J)

175           end do

176           Y(I) = Y(I) - SUMTMP

177         end do ! I

178 !

179         SUMTMP = 0.q0

180         do I = 1, N

181           SUMTMP = SUMTMP + X(I) * Y(I)

182         end do

183 !

184         SUMM = SUMTMP

185 !

186         SUMTMP = 0.q0

187         do I = 1, N

188           SUMTMP = SUMTMP + Y(I) * Y(I)

189         end do

190 !

191         SUMTMP = 1.q0 / sqrt(SUMTMP)

192         do I = 1, N

193           Y(I) = Y(I) * SUMTMP

194         end do

195 !

196         SUMTMP = 0.q0

197         do I = 1, N

198           SUMTMP = SUMTMP + abs(X(I) * X(I) - Y(I) * Y(I))

199           X(I) = Y(I)

200         end do

201 !

202         if( SUMTMP < (EPS*N) ) then

203            ITER = K

204            go to 1000

205         end if

206 !
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207       end do  ! K

208       IND = MITER

209       EIG = 1.q0 / SUMM

210       write(6,*)' ITER greater than  MITER '

211       return

212  1000 continue

213       EIG = 1.q0 / SUMM

214       IND = 0

215       return

216       end subroutine MIPOWQ
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