
51

Multicore Parallelization of Quad-Precision Eigensolvers

Yasuyo HATANO

Shigeyoshi YAMAMOTO

Abstract

Multicore parallelization is detailed, for a program named MIPOWQ, that determines a single

eigenvalue and the corresponding eigenvector of a dense real symmetric matrix on the basis of

Fortran quadruple precision (REAL*16) arithmetic. This program was developed by combining

the inverse power method and the modified Cholesky decomposition, and it gives high parallel

performance in the OpenMP environment. In particular, it achieves 7.79 times speedup in 8-thread

parallel execution for the Frank matrix of dimension 10000. This enhanced performance is due

to the simplicity of the inverse power method and the full use of processing units for quadruple

precision arithmetic. A further program is provided, known as JENNFQ, which determines a subset

of eigenvalues and eigenvectors by the Jennings simultaneous iteration method. These two programs

would present good examples of parallelization by OpenMP although the adopted algorithms are

rather classical.

Keywords: ‌�REAL*16 • Eigenvalue problem • Inverse power method • Modified Cholesky

decomposition • OpenMP • IEEE754

Program Summary

Program Title: MIPOWQ

Programming language: Fortran 2003

Licensing provisions: The MIT License

Computers: Any machine with a Fortran compiler supporting quadruple precision arithmetic (tested

for Intel Fortran, Fujitsu Fortran, and gfortran)

Operating Systems: Linux (tested on CentOS 7.5, RedHat 6.5, and Fedora 24)

High speed storage required: Approximately N 2 + 2N quadruple precision words, where N is the

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 152

matrix dimension.

No. of bits in a word: 32

No. of lines in combined program and test deck: 1942

No. of bytes in distributed program, including test data, etc.: 18973

Distribution format: tar.gz

Nature of physical problem: Eigenvalue problem

Method of solution: The inverse power method. The modified Cholesky decomposition.

Typical running time: The eigenvalue of smallest magnitude and the corresponding eigenvector

of the 10000 × 10000 Frank matrix can be obtained within 620 sec wall-clock time on the Intel Xeon

processor (3.7 GHz) via 8-thread parallel execution.

1. Introduction

Eigenvalue problems appear often in scientific computations. Accuracy greater than double

precision is needed in some computations.1–6 Programs tackling the eigenvalue problem exist as

modules in almost all mathematical program libraries, but it is hard to find any that are capable of

working in quadruple precision arithmetic (QP, IEEE754-2008 7). In particular, Intel Math Kernel

Library (MKL8) does not release a quadruple precision version.

We address this need by using Fortran quadruple precision (REAL*16). If there is a source

program which uses double precision, it is then easy to rewrite it to the quadruple precision version.

However, quadruple precision arithmetic takes an order of magnitude greater computational time

than double precision arithmetic.

To avoid this difficulty, double-double (DD) arithmetic was proposed by Bailey.9 On the basis of

DD arithmetic, a basic matrix operation program library (QPBLAS) and eigenvalue problem package

(QPEigen) have been developed by Yamada et al.10 They reported that computational times were

reduced by a factor of 10 compared to the IEEE754 quadruple precision version. A similar DD

program library (ASLQUAD11,12) has been provided by NEC Co. In addition, a DD and quad library

named lis has been provided by Nishida’s group.13

There are still cases in which the number of digits of the exponent is inadequate, however. The DD

arithmetic does not work in such situations. Instead, we simply use Fortran REAL*16, which ensures

the portability of the program and facilitates maintenance.

In this paper we present two programs. These are called MIPOWQ and JENNFQ. The MIPOWQ

program is a new development. It determines an eigenvalue and the corresponding eigenvector of

Multicore Parallelization of Quad-Precision Eigensolvers 53

a dense real symmetric matrix. JENNFQ has been developed by converting the JENNFD program

contained in NUMPAC (Nagoya University Numerical Package) library14,15 to quadruple precision,

from double precision. (Y.H. is one of the authors of NUMPAC.) The JENNFQ program determines

a subset of eigenvalues and eigenvectors. We have successfully gained high performance by

multithreading. The advantages of these two programs will be made clear by comparing them with

other eigenvalue programs based on other algorithms.

To date, we have used existing subroutine libraries of double/quadruple precision arithmetic

contained in the open-source NUMPAC program library14,15 to solve problems in physics.1,2 In

particular, we developed a program named SCELTO_gauss for single-center expansion of the 2Sg

wavefunction of the hydrogen molecular ion (H2
+) using Laguerre-type orbitals (LTOs). We obtained

wavefunctions with an error in the energy of less than 10–6 a.u.16 by expanding the wavefunction with

LTOs up to the quantum numbers n = 203 and l = 202. The Hamiltonian is a dense matrix of size

10404 × 10404. The proportion of elements having an absolute value greater than 10–30 is 92%. The

diagonalization stage took 10.5 hours (38146 sec) on an Intel Core i7-3970X (3.50 GHz) processor. To

reach convergence to the exact solution, quadruple precision arithmetic was necessary.

Much CPU time was taken in generating the Hamiltonian of size 10404 × 10404; this took 189 hours

(682394 sec) in serial mode. We optimized the orbital exponent (z l) by varying it about 10 times for

each quantum number l while increasing l from 0 to (n–1). In this way we confirmed the convergence

of the total energy to the exact value. Since we diagonalize the Hamiltonian many times during a

solution, the eigenvalue problem took 50% of the entire computation. The SCELTO_gauss program

uses HOBSVQ in NUMPAC as an eigensolver. The HOBSVQ subroutine is used for determining a subset

of eigenvalues/eigenvectors by means of the Householder transformation and the bisection method.

If the eigenvalue problem can be solved more efficiently, more LTOs can be used and more accurate

results obtained. This is why we decided to develop more efficient eigensolvers. For parallelization,

we use OpenMP.17,18

We have developed eigensolvers, based on the following points.

(1)	As the number of significant digits in double precision (16 digits) proved insufficient for the

quantum number n>20 for the H2
+ calculations,1,2 we require accuracy of significant digits over

20.

(2)	The eigenvalue smallest in magnitude is determined for a dense real symmetric matrix.

(3)	Multicore parallelization is to be implemented for speedup.

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 154

At the beginning of program development, we adopted the QD library9 and achieved speedup by a

factor of 3 compared to the serial HOBSVQ. (In QD, two double precision numbers are combined and

the mantissa has 2 × 2 = 4 precision; the exponent is in the same range as a double precision number

(10±308)). As the number of digits of the exponent is inadequate for calculation of the Hamiltonian, we

decided to write a program without resorting to QD library. Regarding points (2) and (3) above, Intel

MKL contains excellent eigensolvers such as dsyevx, dsyevd, but quadruple precision versions

are not available at present. These reasons are why we developed a parallel eigensolver of quadruple

precision (REAL*16).

The eigenproblem in this case is to obtain a vector x which satisfies Ax = lx where A is a dense

real symmetric matrix. Two methods are:

(1)	MIPOWQ: The inverse power method.19,20

	 Using modified Cholesky decomposition (LDLT factorization20), followed by repeated forward

substitutions and backward substitutions, the eigenvalue smallest in magnitude, and the

corresponding eigenvector, are obtained in a set. An arbitrary eigenvalue can be determined by

subtracting its approximate value from the diagonal elements of the matrix.

(2)	JENNFQ: The Jennings simultaneous iteration method.21,22

	 A limited subset of eigenvalues, including the smallest (or largest) in magnitude, and their

corresponding eigenvectors, are determined. The subroutine JENNFQ was made by converting

the subroutine JENNFD14,15 in NUMPAC to quadruple precision, from double precision, and by

parallelizing it by inserting an OpenMP directive.

For diagonalizing large sparse real symmetric matrices, other methods such as the Davidson

method23 have been developed especially for diagonal dominant cases. The Davidson method is

applied to large configuration interaction (CI) calculations. Nowadays eigenvalue problems of

dimension over one billion are solved in the area of molecular physics and chemistry.24 By Sleijpen

and van der Vorst,25 the Davidson method was extended to more general cases and the convergence

rate was improved. Their method is called the Jacobi-Davidson method.

2. Algorithm

The power method used in MIPOWQ and the simultaneous iteration method used in JENNFQ

are both based on algorithms which give the eigenvalue largest in magnitude. To determine the

Multicore Parallelization of Quad-Precision Eigensolvers 55

eigenvalue of least magnitude, an eigenvalue problem of the inverse matrix (A–1) is to be solved, i.e.,

A–1 x = (1/l) x. Then the inverse of the maximum absolute eigenvalue of A–1 gives an eigenvalue

of A. An arbitrary eigenvalue can be determined by subtracting its approximate value (s) from the

diagonal elements of A in advance.

The detailed procedure is as follows. At first, setting an approximate value (s), we obtain r1 (the

largest eigenvalue in magnitude) by solving the eigenvalue problem ((A – sI)–1 v = r1 v). From

the equation A v = (1/r1 + s) v, we obtain (1/r1 + s) as the eigenvalue closest to s, and v as the

corresponding eigenvector.

(1)	MIPOWQ

	 The power method associated with a Rayleigh quotient is employed to accelerate convergence.

The matrix A is decomposed by the modified Cholesky decomposition. Then the inverse power

method is applied; this is followed by the solution method for simultaneous linear equations,

which is associated with forward substitutions and backward substitutions. Convergence is

judged by fluctuation of the eigenvectors.

	 The numbers of arithmetic operations in MIPOWQ are N 3/3 + N 2 – 5N/6 for the modified

Cholesky decomposition, and 2N 2 – N for the forward/backward substitutions. Thus the total

number of operations becomes N 3/3 + N 2/2 + cycle × 2N 2 + O(N), where ‘cycle’ denotes the

number of iterations before convergence is attained.

	 In total, three OpenMP directives are inserted in the code. One is at the modified Cholesky

decomposition, and the others are at the forward/backward substitutions.

	 MIPOWQ demands memory of minimum size, i.e., matrix A, eigenvector v, and a 1-dimensional

array of size N. The total memory required is 16(N 2 + 2N) bytes.

	 The procedure is described in detail in Appendix B.

(2)	JENNFQ

	 Details of the algorithm are given in Ref.21,22. An OpenMP directive is inserted in the modified

Cholesky decomposition portion. The large arrays required are the matrix A, eigenvector v, and

a 1D working area of size 3N.

3. Performance

3.1 Test matrices

The Frank matrix26 of dimension N is used for test calculations. Its elements are defined as

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 156

ai,j = N + 1 – MAX(i, j). Its exact eigenvalues are given by the following formula.

� (1)

The error is represented by err(lN’) = | lN’ – lN |, where lN’ is the calculated value of the eigenvalue.

We tested the cases N = 1000, 2000, and 10000. We assigned a value of 0.25 to s (an approximate

value for lN.

3.2 Computational environment

The host computer used for the benchmark test is a w2145. As detailed in Table C.6, it has a CPU

unit comprising an Intel Xeon W-2145 (clock-rate 3.70 GHz) with 3rd cache (last level cache, LLC)

of 11 MB, 8 cores, HTT (hyper-threading technology),18 and TBT (turbo boost technology).27,28 The

Intel Fortran compiler is used, and the following compiler options are specified.

-O3 -xHost -mcmodel=small -qopenmp -ip

We bind OpenMP threads and hardware threads using the following environment variable, which is

available under the Intel Fortran environment.

KMP_AFFINITY=verbose,granularity=fine,scatter

Details of the binding method will be described in Subsection 3.5.

3.3 Accuracy

In this subsection we discuss the accuracy19,20 of the computational results. The errors (err(lN’))

in the eigenvalues, and errors (err(xN’)) in the eigenvectors are set out in Table 1.

The convergence criterion (EPS) is set at 10–25. For MIPOWQ and JENNFQ, convergence is judged

by the fluctuation of the eigenvector. For HOBSVQ, a tight convergence criterion (EPS = 10–34) on the

eigenvalue is adopted.

Table 1.	 Errors in the eigenvalues and eigenvectors of the Frank matrices diagonalized by MIPOWQ /

JENNFQ. (The degree of parallelism is 1.)

MIPOWQ (EPS = 10–25) JENNFQ (EPS = 10–25)

N Iter.* err(lN’) err(xN’) Iter.* err(lN’) err(xN’)

1000 30 1.54E-31 2.00E-30 29 1.54E-31 2.58E-30

2000 38 1.66E-31 1.99E-29 26 1.66E-31 1.10E-29

10000 37 3.84E-30 2.37E-28 29 3.84E-30 3.24E-28

* Number of iterations until convergence.

Multicore Parallelization of Quad-Precision Eigensolvers 57

Below, the exact eigenvalues for N = 1000, 2000, and 10000 are listed up to 35 digits.

	 l1000	 = 0.25000 06162 34899 77511 48137 94229 54161

	 l2000	 = 0.25000 01541 35554 74188 04357 05940 25200

	 l10000	 = 0.25000 00061 67886 04811 39811 77862 77643

The results of MIPOWQ and HOBSVQ (Householder-Bisection) are as follows.

	 l1000’	 = 0.25000 06162 34899 77511 48137 94229 69545

	 l2000’	 = 0.25000 01541 35554 74188 04357 05940 08631

	 l10000’	 = 0.25000 00061 67886 04811 39811 77858 93636

	 l1000’	 = 0.25000 06162 34899 77511 48137 94229 57252

	 l2000’	 = 0.25000 01541 35554 74188 04357 05940 16898

	 l10000’	 = 0.25000 00061 67886 04811 39811 77862 73877

The calculated eigenvalues of MIPOWQ are identical to the exact values up to 29 digits, and the

errors are less than 10–30. Compared to the rounding unit (10–34) of quadruple precision defined by

IEEE754,7 the loss of precision is 5 digits. The eigenvector has an accuracy of more than 28 decimal

digits. The number of iterations in JENNFQ is less than that with MIPOWQ, indicating that the vector

acceleration in JENNFQ works effectively.

3.4 Speed and parallel performance

Wall-clock times (elapsed times) taken to determine an eigenvalue and the corresponding

eigenvector of the Frank matrices are set out in Table 2 (for MIPOWQ) and Table 3 (for JENNFQ).

We term the ratio of the wall-clock time of a 1-thread job to that of a multithread job the

performance ratio (PR). In the case of MIPOWQ (N = 10000), the PRs are 1.99 for 2-thread, 3.78 for

4-thread, and 7.45 for 8-thread. In the case of JENNFQ they are 1.95 for 2-thread, 3.57 for 4-thread,

and 6.52 for 8-thread. (Only a single eigenpair is evaluated even for JENNFQ.) Thus the PR increases

almost linearly with the number of threads. The PR of MIPOWQ is greater than that of JENNFQ. The

PR values of MIPOWQ are shown as solid lines in Fig. 1. Dotted lines in Fig. 1 show PRs with TBT

correction. The TBT correction will be explained in the next subsection.

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 158

Table 2.	 Wall-clock time (sec) for diagonalizing the Frank matrices by MIPOWQ on w2145.

Number of threads

N 1 2 3 4 5 6 7 8

1000 5.74 3.05 2.23 1.77 1.50 1.30 1.18 1.07

2000 41.55 21.30 15.02 11.46 9.37 7.94 6.92 6.16

10000 4610.87 2321.39 1621.15 1219.89 979.68 819.20 704.66 619.31

Table 3.	 Wall-clock time (sec) for diagonalizing the Frank matrices by JENNFQ on w2145.

Number of threads

N 1 2 3 4 5 6 7 8

1000 5.52 3.27 2.60 2.21 1.97 1.82 1.71 1.61

2000 40.39 22.08 16.67 13.49 11.57 10.30 9.39 8.70

10000 4620.30 2371.41 1687.53 1295.48 1060.05 904.74 792.65 708.80

Here we compare wall-clock times between HOBSVQ (serial version) in NUMPAC used in Ref.1,2,

and MIPOWQ. Wall-clock times for HOBSVQ for N = 1000, 2000, and 10000 are 26.73 sec, 226.33 sec,

and 29395.27 sec. MIPOWQ is 6.4 times faster than HOBSVQ for 1-thread, and 47.5 times faster for

8-thread in the case N = 10000.

The number of arithmetic operations for the Householder transformation19,20 in HOBSVQ is of the

order of (4/3)N 3 (See Ref.20). The operations in the modified Cholesky decomposition in MIPOWQ

Fig. 1.	 Parallel performance of MIPOWQ on w2145 for diagonalizing the Frank matrices. Red, blue, and

black lines (in the order from the lowermost to the uppermost) refer to N = 1000, 2000, and 10000,

respectively. Solid/dotted lines illustrate performance ratios without/with TBT correction.

Multicore Parallelization of Quad-Precision Eigensolvers 59

number about (1/3)N 3. Thus for large N, the number of operations will be about 4 times greater in

HOBSVQ than in MIPOWQ. HOBSVQ takes more wall-clock time than expected from the number of

arithmetic operations alone. This is because there is an array reference with a long stride in the code

of HOBSVQ.

Here we compare the wall-clock time of double precision program MIPOWD derived from MIPOWQ

and that of MIPOWQ. For N = 10000, they are 96 sec and 4611 sec, respectively. Therefore the ratio of

the cost between double precision and quadruple precision is 48. This suggests that MIPOWQ is CPU-

bound, that is, arithmetic operations in the cores consume more time than data transfer between the

cores and the main memory.

For N = 10000, the performance of MIPOWQ is 550 MFLOPS. Dongarra’s group29 obtained high

performance for Cholesky decomposition in a similar computational environment by exploiting

the tiled (or blocked) algorithms,29 which are optimal for the modern cache architecture. We

provisionally implemented the blocked version of the modified Cholesky decomposition (dsytrs)

and forward/backward substitutions (dsytrf) in LAPACK30 with MIPOWQ and evaluated its

performance. The speedup was not so great (33% for 1-thread, 10% for 8-thread). For a higher

degree of parallelism, the PR of the modified program is decreased. This is because the quadruple

precision arithmetic in the present program is CPU-bound. We provide the programs coded without

blocking because we prefer higher parallel performance and the simplicity of the code.

We conclude that, for evaluating a single eigenpair, MIPOWQ (the inverse power method) is

superior to the Householder-Bisection method. To determine a limited subset of eigenpairs, JENNFQ

(the simultaneous iteration method) is advantageous. In the case of MIPOWQ, for large N, the

modified Cholesky decomposition becomes the dominant step in the computation, and the number

of operations is approximately (1/3)N 3.

The wall-clock time for diagonalizing the H2
+ Hamiltonian described in our Introduction has been

reduced from 38146 sec (serial HOBSVQ) to 7374 sec by 1-thread execution (MIPOWQ), and to 1350

sec by 6-thread.

3.5 Scalability

We now consider the scalability of the MIPOWQ program by exploiting TBT.27,28 TBT dynamically

varies the clock-rates of cores. When only a single core is working, TBT increases the clock-rate over

the base frequency, and when multiple cores are working it slows their clock-rates to reduce heat

generation. TBT is available on the Intel Xeon W-2145 of the computer systems used (w2145).

The measured parallel performance (solid lines in Fig. 1) shows deceleration of growth as

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 160

the number of threads increases. This is not easy to interpret, because TBT contributes to this

deceleration. Consequently, we estimate the parallel performance assuming that the clock-rate is

constant even for multithread execution. We call this compensation for parallel performance TBT

correction. TBT correction will now be discussed.

Under the Intel Fortran environment, a binding method between OpenMP threads and hardware

threads can be specified by the environment variable KMP_AFFINITY. If “scatter” is specified for

this variable, the threads are distributed as evenly as possible across the entire system. For example,

in the 2-thread parallel mode, the first thread is bound to the first core of the first CPU unit, and the

second thread is bound to the first core of the second CPU unit. The frequency31 of the Intel Xeon

W-2145 is listed in Table 4; the cores operate at 4.5 GHz until there are 2 threads, and at 4.3 GHz

for 3 threads or more. Assuming that the performance of each core is proportional to the frequency,

we compensate for the ostensible deceleration of performance by multiplying by 1.0 for 1–2 thread,

(4.5/4.3) for 3–8 threads. Table 5 gives the PRs without/with TBT correction. The dotted lines in

Fig. 1 show the corrected PRs. The corrected PR of MIPOWQ reaches 7.79 in the 8-thread case,

suggesting high scalability of MIPOWQ.

Table 4.	 Turbo frequency (GHz) of the Intel Xeon W-2145.

Number of working cores

1 2 3–8

Turbo frequency 4.5 4.5 4.3

Cited from Ref.31.

Table 5.	 Performance ratio of MIPOWQ (N = 10000) corrected by taking TBT into account.

TBT Number of threads

Hostname correction 1 2 3 4 5 6 7 8

w2145 Without 1 1.99 2.84 3.78 4.71 5.63 6.54 7.45

w2145 With 1 1.99 2.98 3.96 4.93 5.89 6.85 7.79

CX2 Needless 1 1.99 2.97 3.95 4.93 5.88 6.85 7.79

We have measured the performance on a different computer system (CX2). The specifications of

this system are listed in Table C.6 of Appendix C. The Intel Xeon E5-2697V2 is mounted on the

CX2, with the Intel Xeon Phi 3120P co-processor attached. Wall-clock times for MIPOWQ are listed

in Table D.7 in Appendix D, and plotted in Fig. D.2. The wall-clock times for JENNFQ on CX2 are

given in Table D.8. For MIPOWQ the PR for the 8-thread case and N = 10000 is 7.79. Amdahl’s law18,32

is expressed by the following formula:

Multicore Parallelization of Quad-Precision Eigensolvers 61

� (2)

By substituting 7.79 for PR and 8 for p (the degree of parallelism) into Eq.(2), the value of a (the

fraction of the parallelized code) is calculated to be 0.9961. This large value of a implies high

scalability of MIPOWQ. Since the Phi 3120P co-processor does not have TBT, its PRs can be compared

directly with those for w2145. The PR value of 7.79 for CX2 is very close to the PR value (7.79) with

TBT correction in the 8-thread case on w2145. This strongly suggests that the TBT correction we

have proposed is appropriate and that MIPOWQ has high scalability.

Here we give other results of another machine (cluster) of 32 cores in total. The specifications of

cluster is given in Table C.6 of Appendix C and the turbo frequencies in Table E.9 of Appendix E.

The wall-clock times of MIPOWQ and JENNFQ are set out in Tables E.10 and E.11. PRs are

plotted against number of threads in Fig. E.3. High scalability is shown also on cluster. Since the

actual number of cores is 32, the PR descends sharply at 33-thread as shown in Fig. E.3. The PR

for 64 threads is only slightly better than that of 32 threads, which can be attributed to HTT. It is

recommended to run the program with the number of threads less than or equal to that of cores

equipped actually.

3.6 Portability

We have tested the portability of the programs by executing them under the following

environments: Intel Fortran version 19.0.1, Fujitsu Fortran version 1.2.0, and gfortran version 7.3.1

(Intel Core i7-3970X, Linux Fedora 24).

4. Concluding remarks

We have developed two eigensolvers having quadruple precision (Fortran REAL*16) for dense

real symmetric matrices, known as MIPOWQ and JENNFQ. MIPOWQ specifically determines a single

eigenvalue (the smallest in magnitude), and the corresponding eigenvector is found by combining

the inverse power method and the modified Cholesky decomposition. MIPOWQ exhibits high

multithread parallelism in the OpenMP environment. The calculated eigenvalue has an accuracy of

more than 28 decimal digits. For determining single eigenpairs, the inverse power method is superior

to the Householder-Bisection method. JENNFQ determines a limited subset of eigenpairs, and has

been developed by parallelizing the existing double precision JENNFD program in NUMPAC. Because

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 162

of the scarcity of quad-precision eigensolvers and the high parallel performance of the programs, we

provide MIPOWQ and JENNFQ. The source program of MIPOWQ is listed in Appendix F. The full set

of the source programs and the output files is available upon request to the corresponding author.

Author information

Professor Emeritus, Dr. Yasuyo HATANO

  Institute for Advanced Studies in Artificial Intelligence (IASAI), Chukyo University,

   Toyota 470-0393, Japan.

  ORCID: 0000-0002-7914-8846

  Corresponding author: E-mail address: hatano@sist.chukyo-u.ac.jp

Professor, Dr. Shigeyoshi YAMAMOTO

  School of International Liberal Studies, Chukyo University,

   101-2 Yagoto Honmachi, Showa-ku, Nagoya 466-8666, Japan

  Institute for Advanced Studies in Artificial Intelligence (IASAI), Chukyo University,

   Toyota 470-0393, Japan.

  ORCID: 0000-0003-3780-534X

Acknowledgements

We used computers at IASAI of Chukyo University, and the computer system (CX2) at the

Information Technology Center of Nagoya University. We thank Professor Emeritus Hiroshi Tatewaki

of Nagoya-City University, Professor Emeritus Takemitsu Hasegawa of Fukui University, and

Professor Hiroshi Sugiura of Nanzan University for critical reading of the manuscript. We are grateful

to Professor Akiumi Hasegawa at Chukyo University for making the computers (cluster in particular)

at IASAI available to us.

This research did not receive any specific grant from funding agencies in the public, commercial,

or not-for-profit sectors.

Appendix A.  User’s manual for MIPOWQ and JENNFQ

call MIPOWQ(A, KA, VV, N, EIG, EPS, ITER, MITER, G, ILL)

call JENNFQ(A, KA, N, NE, NV, VV, EIG, C, W, EPS, ITER, ILL)

Multicore Parallelization of Quad-Precision Eigensolvers 63

Name Type | Input&Output | Contents

A real*16 | Input&Output | A 2D array. A dense real symmetric matrix. s should be subtracted

from the diagonal elements in advance. For MIPOWQ, components of the modified Cholesky

decomposition are to be stored in the upper triangle.

KA integer | Input | The adjustable dimension of A/VV.

VV real*16 | Input&Output | A 1D/2D array for MIPOWQ /JENNFQ. Input initial values of eigenvectors.

N integer | Input | The dimension of A.

NE integer | Input | Input the number of eigenvalues to be evaluated by | NE  |. NE > 0 (NE < 0) indicates

that eigenvalues are to be stored in descending (ascending) order of the absolute values.

NV integer | Input | The number of initial vectors.

EIG real*16 | Output | An eigenvalue (eigenvalues) is (are) to be stored. For JENNFQ, a 1D array of size

| NE  |.
C real*16 | Work | A 1D working array of size NV × NV.

W real*16 | Work | A 1D working array of size 3N.

EPS real*16 | Input | A convergence criterion. 1.Q-25 is recommended.

ITER integer | Input&Output | For JENNFQ, input an iteration limit. The number of actual iterations is to

be stored.

MITER integer | Input | An iteration limit.

G real*16 | Work | A 1D working array of size N.

ILL integer | Output | For normal end, zero is to be stored.

By inputting A, where s is subtracted from the diagonal elements in advance, whatever eigenvalue

closest to s can be obtained as (s + EIG).

Appendix B.  Procedure of MIPOWQ

1. Set an initial vector v(0), a shift parameter s, and a convergence criterion e.

2. Set k = 0. Perform the modified Cholesky decomposition20 so that B = A – s I = LDLT, where

L is a lower triangular matrix. The eigenvalue problem to be solved is B–1 v = r v. To obtain

v(k+1) = B–1 v(k), solve the simultaneous equation B v(k+1) = v(k); in other words, solve B v(k+1) =

v(k) → LDLT v(k+1) = v(k).

3. By forward substitutions, solve L y = v(k), and obtain y.

4. By backward substitutions, solve (DL)T v(k+1) = y, and obtain v(k+1).

5. Obtain r(k+1) from (v(k),v(k+1)) (an inner product of vectors).

6. Obtain normalized v(k+1) as v(k+1) / √(v(k+1), v(k+1)) .

7. If Σ
i |(vi

(k+1))2 – (vi
(k))2 | ≤ Ne then go to step 8; otherwise set k + 1 → k and go to step 3. Here,

N is the dimension of matrix A.

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 164

8. Obtain the eigenvalue r of B–1 as r(k+1), and the eigenvector as v(k+1). Then (s + 1/r) is obtained

as the eigenvalue of A closest to s.

Appendix C.  Specification table of computer systems

The specifications of the computer systems used is listed in Table C.6.

Table C.6 Specifications of computer systems.

Hostname

w2145 CX2 (CX400/270) cluster

CPU Intel Xeon W-2145 Intel Xeon E5-2697V2 Intel Xeon E5-2683V4

+ Intel Xeon Phi 3120P

 (co-processor)

Architecture Skylake IvyBridgeEP / Broadwell

KnightsCorner

Clock-rate 3.70 GHz 2.70 GHz / 1.10 GHz 2.10 GHz

#Core/CPU 8 12 / 57 16

#CPU 1 2+1 2

LLC 11 MB 30 MB / 28.5 MB 40 MB

TBT Max 4.50 GHz Max 3.50 GHz / No Max 3.00 GHz

HTT Yes Yes Yes

AVX2 Yes Yes Yes

AVX-512 Yes No No

Main memory 128 GB 128 GB 64 GB

OS Linux Linux Linux

(distribution) CentOS 7.5 RedHat 6.5 CentOS 7.3

Fortran compiler Intel Fortran 19.0.1 Intel Fortran 15.0.5 Intel Fortran 18.0.1

(OpenMP 4.5) Fujitsu Fortran 1.2.0

Appendix D.  Performance on CX2

The wall-clock times for MIPOWQ and JENNFQ on CX2 are set out in Tables D.7 and D.8,

respectively. The PR of MIPOWQ is shown in Fig. D.2.

Table D.7 Wall-clock time (sec) for diagonalizing the Frank matrices using MIPOWQ on CX2.

Number of threads

N 1 4 8 12 18 24

1000 10.58 3.05 1.91 1.50 1.27 1.15

2000 75.21 19.84 10.81 7.81 5.88 4.90

10000 8586.31 2174.26 1101.77 745.01 506.29 388.90

Multicore Parallelization of Quad-Precision Eigensolvers 65

Table D.8 Wall-clock time (sec) for diagonalizing the Frank matrices using JENNFQ on CX2.

Number of threads

N 1 4 8 12 18 24

1000 10.02 3.77 2.77 2.39 2.16 2.05

2000 72.22 22.71 14.62 11.94 10.17 9.32

10000 8467.85 2283.24 1251.82 907.07 675.96 567.21

Appendix E.  Performance on cluster

The wall-clock times for MIPOWQ and JENNFQ on cluster are set out in Tables E.9 and E.10,

respectively. The PR of MIPOWQ is shown in Fig. E.2.

Table E.9 Turbo frequency (GHz) of the Intel Xeon E5-2683V4 of cluster.

Number of working cores

1–2 3 4 5–16

Turbo frequency 3.0 2.8 2.7 2.6

Table E.10 Wall-clock time (sec) for diagonalizing the Frank matrices using MIPOWQ on cluster.

Number of threads

N 1 4 8 16 32 64

1000 9.11 2.81 1.86 1.29 1.03 1.27

2000 64.72 18.00 10.70 6.20 4.06 4.54

10000 7403.38 2098.07 1097.60 562.26 298.01 288.45

Fig. D.2	 Parallel performance of MIPOWQ on CX2 for

diagonalizing Frank matrices. Red, blue, and

black lines are for N = 1000, 2000, and 10000,

respectively.

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 166

Table E.11 Wall-clock time (sec) for diagonalizing the Frank matrices using JENNFQ on cluster.

Number of threads

N 1 4 8 16 32 64

1000 8.67 3.45 2.73 2.23 1.97 3.23

2000 62.41 20.67 14.29 10.18 8.14 10.39

10000 7301.91 2076.75 1222.99 706.78 456.98 436.69

Appendix F.  Source program

Table F.12 Source program of MIPOWQ.

001 subroutine MIPOWQ(A, KA, X, N, EIG,

002 & EPS, ITER, MITER, Y, IND)

003 !--

004 ! Calculates the minimum absolute eigenvalue of the matrix A by the

005 ! modified power method.

006 !

007 ! Written by Yasuyo Hatano 2018-09-08

008 ! Modified by Shigeyoshi Yamamoto 2018-12-08 at Chukyo Univ.

009 ! Modified by Shigeyoshi Yamamoto 2018-12-09

010 ! 4-factor loop unrolling for J.

011 ! Modified by Shigeyoshi Yamamoto 2018-12-10

012 ! The OpenMP directive is moved to just in front of the inner

013 ! loop of I.

014 ! Modified by Shigeyoshi Yamamoto 2018-12-15

Fig. E.3	 Parallel performance of MIPOWQ on cluster

for diagonalizing Frank matrices. Red, blue,

and black lines are for N = 1000, 2000, and

10000, respectively. Solid/dotted lines illustrate

performance ratios without/with TBT correction.

Multicore Parallelization of Quad-Precision Eigensolvers 67

015 ! Modified by Yasuyo Hatano 2018-12-26

016 !--

017 ! Explanation of the arguments.

018 ! A : A 2D matrix. The lower triangle (except for the

019 ! diagonals) are kept unchanged.

020 ! KA : The extent of the 1st dimension of the matrix A.

021 ! X : Eigenvectors. The initial vectors are to be input and

022 ! the resultant vectors are to be output.

023 ! N : The length of the 1st index of the matrix A that is

024 ! actually referred.

025 ! EIG : Eigenvalues are to be output.

026 ! EPS : A constant for judging convergence.

027 ! ITER : The number of iterations is to be output.

028 ! MITER : The limit for the iteration number is to be input.

029 ! This is initialized by 100 in the subroutine TESTSUB.

030 ! Y : A 1D working array.

031 ! IND : Resultant status is to be output.

032 ! IND=0 : Normal end

033 ! IND=30000 : Incorrect input values of the arguments.

034 ! IND=K : Abnormal end because the pivot approaches

035 ! zero at the K-th stage of elimination.

036 !--

037 include 'MIT_license.txt'

038 implicit none

039 integer, intent(in) :: KA, N, MITER

040 integer, intent(out) :: ITER, IND

041 real(kind=16) :: EPS, EIG

042 real(kind=16), intent(inout) :: A(KA,KA), X(KA)

043 real(kind=16) :: Y(KA)

044 !--

045 integer :: I, J, K

046 integer :: JEND

047 real(kind=16) :: SUMTMP, SUMM, ANORME, W

048 real(kind=16) :: AKJ, AKJ1, AKJ2, AKJ3

049 !--

050 ! unrolling factor

051 integer :: JFACTOR = 4

052 real(kind=16) :: EPSZ = 1.q-34

053 intrinsic abs, max, sqrt

054 !--

055 ! The original loop structure of the Modified Cholesky

056 ! decomposition (LDL^T) before loop unrolling.

057 !

058 !# do K = 1, N

059 !# do I = 1, K-1

060 !# W = A(I,K)

061 !# A(I,K) = W / A(I,I)

062 !# A(K,K) = A(K,K) - A(I,K) * W

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 168

063 !# end do

064 !# do J = K+1, N

065 !# AKJ = A(K,J)

066 !# $OMP parallel do reduction(-:AKJ)

067 !# do I = 1, K-1

068 !# AKJ = AKJ - A(I,K) * A(I,J)

069 !# end do

070 !# A(K,J) = AKJ

071 !# end do

072 !--

073 ITER = 0

074 if(N > KA .or. N < 1 .or. EPS <= 0.q0) then

075 IND = 30000

076 return

077 end if

078 !

079 SUMM = 0.q0

080 do J = 1, N

081 SUMTMP = 0.q0

082 do I = 1, N

083 SUMTMP = SUMTMP + abs(A(I,J))

084 end do

085 SUMM = max(SUMM,SUMTMP)

086 end do

087 ANORME = SUMM * EPSZ

088

089 SUMTMP = 0.q0

090 do I = 1, N

091 SUMTMP = SUMTMP + X(I) * X(I)

092 end do

093 SUMM = SUMTMP

094 !

095 SUMTMP = 1.q0 / sqrt(SUMTMP)

096 do I = 1, N

097 X(I) = X(I) * SUMTMP

098 end do

099 IND = 0

100 !

101 ! ...The Modified Cholesky decomposition (LDLT) starts.

102 !

103 do K = 1, N

104 do I = 1, K-1

105 W = A(I,K)

106 A(I,K) = W / A(I,I)

107 A(K,K) = A(K,K) - A(I,K) * W

108 end do

109 !

110 if(A(K,K) < ANORME) then

Multicore Parallelization of Quad-Precision Eigensolvers 69

111 IND = K

112 write(6,"('A is ill-conditioned. IND=',I5)") IND

113 return

114 end if

115 !

116 JEND = JFACTOR * ((N-K)/JFACTOR) + K

117 !$OMP parallel do

118 do J = K+1, JEND, JFACTOR

119 AKJ = A(K,J)

120 AKJ1 = A(K,J+1)

121 AKJ2 = A(K,J+2)

122 AKJ3 = A(K,J+3)

123 do I = 1, K-1

124 AKJ = AKJ - A(I,K) * A(I,J)

125 AKJ1 = AKJ1 - A(I,K) * A(I,J+1)

126 AKJ2 = AKJ2 - A(I,K) * A(I,J+2)

127 AKJ3 = AKJ3 - A(I,K) * A(I,J+3)

128 end do

129 A(K,J) = AKJ

130 A(K,J+1) = AKJ1

131 A(K,J+2) = AKJ2

132 A(K,J+3) = AKJ3

133 end do

134 !

135 !$OMP parallel do

136 do J = JEND+1, N, 1

137 AKJ = A(K,J)

138 do I = 1, K-1

139 AKJ = AKJ - A(I,K) * A(I,J)

140 end do

141 A(K,J) = AKJ

142 end do

143 !

144 end do ! K

145 !

146 ! ...End of the Modified Cholesky decomposition

147 !

148 do I = 1, N

149 Y(I) = X(I)

150 end do

151 !

152 do K = 1, MITER

153 !

154 ! ...Forward substitution

155 !

156 do I = 1, N

157 SUMTMP = 0.q0

158 !

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 170

159 !$OMP parallel do reduction(+:SUMTMP)

160 do J = 1, I-1

161 SUMTMP = SUMTMP + A(J,I) * Y(J)

162 end do ! J

163 Y(I) = Y(I) - SUMTMP

164 end do ! I

165 !

166 ! ...Backward substitution

167 !

168 do I = N, 1, -1

169 Y(I) = Y(I) / A(I,I)

170 !

171 SUMTMP = 0.q0

172 !$OMP parallel do reduction(+:SUMTMP)

173 do J = I+1, N

174 SUMTMP = SUMTMP + A(I,J) * Y(J)

175 end do

176 Y(I) = Y(I) - SUMTMP

177 end do ! I

178 !

179 SUMTMP = 0.q0

180 do I = 1, N

181 SUMTMP = SUMTMP + X(I) * Y(I)

182 end do

183 !

184 SUMM = SUMTMP

185 !

186 SUMTMP = 0.q0

187 do I = 1, N

188 SUMTMP = SUMTMP + Y(I) * Y(I)

189 end do

190 !

191 SUMTMP = 1.q0 / sqrt(SUMTMP)

192 do I = 1, N

193 Y(I) = Y(I) * SUMTMP

194 end do

195 !

196 SUMTMP = 0.q0

197 do I = 1, N

198 SUMTMP = SUMTMP + abs(X(I) * X(I) - Y(I) * Y(I))

199 X(I) = Y(I)

200 end do

201 !

202 if(SUMTMP < (EPS*N)) then

203 ITER = K

204 go to 1000

205 end if

206 !

Multicore Parallelization of Quad-Precision Eigensolvers 71

207 end do ! K

208 IND = MITER

209 EIG = 1.q0 / SUMM

210 write(6,*)' ITER greater than MITER '

211 return

212 1000 continue

213 EIG = 1.q0 / SUMM

214 IND = 0

215 return

216 end subroutine MIPOWQ

References

  1	 Y. Hatano and S. Yamamoto, J. Comput. Chem., Jpn -Int. Ed. 2, 2016-0003 (2016).

	 doi: 10.2477/jccjie.2016-0003.
  2	 S. Yamamoto, Y. Hatano, and H. Tatewaki, Comp. Theor. Chem. 1103, 17–24 (2017).
  3	 J. S. Sims and S. A. Hagstrom, J. Phys. B: At. Mol. Opt. Phys. 37, 1519–1540 (2004).
  4	 L.-Y. Tang, Y.-B. Tang, T.-Y. Shi, and J. Mitroy, J. Chem. Phys. 139, 134112 (2013).
  5	 Y. Scribano, G. Parlant, and B. Poirier, J. Chem. Phys. 149, 021101 (2018).
  6	 A. M. Ferrenberg, J. Xu, and D. P. Landau, Phys. Rev. E 97, 043301 (2018).
  7	 IEEE Computer Society, (August 29, 2008), IEEE Standard for Floating-Point Arithmetic, IEEE.

	 doi: 10.1109/IEEESTD.2008.4610935.
  8	 Intel MKL, Intel Math Kernel Library, 2018. [Cited 2018-10-9]

	 URL https://software.intel.com/en-us/mkl.
  9	 D. H. Bailey, QD (A C++/Fortran-90 double-double and quad-double package). [Cited 2018-10-9]

	 URL http://crd-legacy.lbl.gov/~dhbailey/mpdist/.
10	 S. Yamada, T. Ina, N. Sasa, Y. Idomura, M. Machida, and T. Imamura, 2017 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 1418, IEEE Com. Soc. (2017).
11	 R. Ogata, Y. Kubo, and T. Takei, NEC Technical Journal 3, 59–63 (2008).

	 URL https://www.nec.com/en/global/techrep/journal/g08/n04/pdf/080412.pdf.
12	 R. Ogata, Y. Kubo, and T. Takei, J. Soc. Instrum. Control Engnr. 49, 319–322 (2010). (mainly in Japanese).
13	 A. Nishida, “Experience in Developing an Open Source Scalable Software Infrastructure in Japan”, Lecture

Notes in Computer Science 6017, Springer, 448–462 (2010).

	 doi: https://doi.org/10.1007/978-3-642-12165-4_36.
14	 I. Ninomiya and Y. Hatano, “Performance of the Vector Version of NUMPAC”, in: High Performance Computing:

Research and Practice in Japan, R. Mendez (Ed.), John Wiley & Sons, Chichester (1992).
15	 T. Hasegawa, T. Sandoh, Y. Sato, Y. Hatano, and I. Ninomiya, Memoirs of the Faculty of Engineering, Fukui

University, 48, 193–213 (2000). http://hdl.handle.net/10098/3316 [Cited 2018-10-9]

	 URL http://www2.itc.nagoya-u.ac.jp/center/ja/numpac/index.html.
16	 J. M. Peek, J. Chem. Phys. 43, 3004–3006 (1965).
17	 R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon, “Parallel Programming in OpenMP”,

Academic Press, San Diego, CA, USA (2001).
18	 S. Akhter and J. Roberts, “Multi-Core Programming”, Intel Press, Hillsboro, OR, USA (2006).
19	 A. N. Ralston and P. R. Rabinowitz, “A First Course in Numerical Analysis”, 2nd Ed., Dover, N.Y. (2001).
20	 G. H. Golub and C. F. van Loan, “Matrix Computations”, 4th Ed., Johns Hopkins University Press, Baltimore

(2013).

Chukyo University Bulletin of the School of International Liberal Studies 2019 Vol. 12 No. 172

21	 M. Clint and A. Jennings, Comput. J. 13, 76–80 (1970).
22	 A. Jennings, “Matrix Computation for Engineers and Scientists”, John Wiley & Sons, London (1977).
23	 E. R. Davidson, J. Comput. Phys. 17, 87–94 (1975).
24	 J. Olsen, P. Jørgensen, and J. Simons, Chem. Phys. Letters, 169, 463–472 (1990).
25	 G. L. G. Sleijpen and H. A. van der Vorst, SIAM Review, 42, 267–293 (2000).
26	 W. L. Frank, J. Soc. Indust. Appl. Math. 6, 378–392 (1958).
27	 Intel Corporation. “Intel Turbo Boost Technology in Intel Core Microarchitecture (Nehalem) Based

Processors.”, Whitepaper, Intel Corporation, November 2008.
28	 J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova, 2009 IEEE International Symposium on Workload

Characterization (IISWC), 188–197 IEEE Com. Soc. (2009).
29	 A. YarKhan, J. Kurzak, P. Luszczek, and J. Dongarra, Int. J. Parallel Prog. 45, 612–633 (2017).
30	 E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, Release 3.0, SIAM, Philadelphia (1999).

[Cited 2018-10-9]

	 URL http://www.netlib.org/lapack/.
31	 WikiChip, Intel Xeon W-2145. [Cited 2018-12-19]

	 URL https://en.wikichip.org/wiki/intel/xeon_w/w-2145.
32	 G. M. Amdahl, AFIPS Conference Proceedings (30) 483–485 (1967).

	 doi: 10.1145/1465482.1465560.

