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Hartree-Fock calculations for the positronium  

negative ion Ps–

Shiro L. Saito

Abstract

The total energy and several properties of the ground state of the positronium negative ion Ps–, 

obtained using the Hartree-Fock calculations, are presented. Calculations were performed using 

the restricted Hartree-Fock (RHF) and the spin extended Hartree-Fock (SEHF) methods. The 

total energies obtained from the RHF and the SEHF calculations are –0.24396487 hartree and 

–0.25691975 hartree, respectively. The RHF energy is higher than the ground state energy of the 

positronium (–0.25 hartree). The RHF method provides qualitatively incorrect ground state energy 

for the Ps–. As for the electron-positron pair annihilation rate, the RHF and the SEHF calculations 

yield 1.4582933 × 109s–1 and 1.8975601 × 109s–1, respectively. Compared with the electron-positron 

pair annihilation rate calculated by Frolov [Phys. Rev. A60, 2834 (1999)], the respective values are 

69.9% and 91.0% of Frolov’s value.

1. INTRODUCTION

The positronium Ps is the bound state of one electron and one positron. Ps forms the positronium 

negative ion Ps– by capturing one electron. Ps– was experimentally detected by Mills in an 

experiment is 1981.1 Mills also measured the electron-positron pair annihilation rate, which is (2.09 

± 0.09) × 109s–1.2

Quantum mechanical calculations for Ps– have been carried out using methods with explicitly 

correlated functions (ECFs) because Ps– is a three-body system. The ECF methods can provide 

highly accurate results. Hyllerass calculations were performed by Bhatia and Drachman3 and Ho4-6. 

Krivec et al. calculated using the hyperspherical method.7 Frolov used the variational methods 

with explicitly correlated exponential functions and obtained highly accurate results.8-11 Varga et al. 

calculated using the stochastic variational method.12 As far as we known, the most accurate energy 
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and properties were obtained by Frolov11. The electron-positron pair annihilation rates given from 

those calculations are in good agreement with the experimental value2.

Until now, the Hartree-Fock (HF) and configuration interaction (CI) methods have not been 

employed for quantum mechanical calculations of Ps–. The HF and CI methods which are based on 

orbitals are standard methods for quantum mechanical calculations of atomic systems. Therefore, 

it is interesting to evaluate the ability of the HF and CI methods for Ps–. The electron-positron 

correlation effects are very important for the quantum mechanical calculations of electronic systems 

with positrons. Although the HF method is a simple one, it is possible to perfectly include electron-

positron correlation effects in the calculations of Ps–. Hence, the HF calculation for Ps– is very 

interesting. In this work, we performed the HF calculations for the ground state of Ps–, and by doing 

so, evaluated the ability of the HF method.

There are several variants of the HF method. In this work, we used the restricted HF (RHF) 

and the spin extended HF (SEHF) methods. The RHF method constrains to have the same spatial 

function for electrons with a  and b  spins. The SEHF method treats spin symmetry adapted wave 

functions which have different spatial functions for electrons with a  and b  spins. The SEHF method 

was introduced by Löwdin13 and was developed by Goddard14 and Kaldor15. The SEHF method has the 

advantage of including the electron-electron radial correlation effect. 

The electron orbitals centered on the positron are expanded with some basis functions. The basis 

function used for the present calculations is the B-spline set. The B-splines of order K, {Bi,K (r)}, are 

piecewise polynomials of degree K – 1 on a knot sequence in a cavity of radius R.16,17 The advantage of 

B-splines is that they are very flexible and are relatively free from computational linear dependence. 

Hence, the errors caused by incompleteness of the basis function are very small.

Section 2 formulates the theoretical method. Section 3 gives computational details for RHF and 

SEHF wave functions. Section 4 compares our results with the values obtained by the accurate 

calculation. This section also includes perspectives for future studies of Ps–.

2. THEORETICAL ASPECTS

The total Hamiltonian of Ps– in atomic unit is written as 

Htotal = −   ∇
0
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where the positron refers to 0, and the electrons refer to 1 and 2. We introduce the center-of-mass 

coordinate R and the relative coordinates r01 and r02 as follows:
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R =     (r0 + r1 + r2 )� (2)

r01 = –r0 + r1  � (3)

r02 = –r0 + r2 .� (4)

By separating the center-of-mass motion from Htotal, the Hamiltonian for the relative motion is 

obtained:

H = –∇
1

2 – ∇2
2 – ∇

1 ∙ ∇2 – r1
–1 – r

2
–1 + r

12
–1 .� (5)

The index 0 is omitted from Eq.(5) because the positron is fixed on the origin of the relative 

coordinate. The third term of Eq.(5) is the mass polarization term.

The HF wave function of Ps– is 

Y = [A(r1)B(r2) + (–1)SB(r1)A(r2)]ΘM
S ,� (6)

where A and B are orbitals of electrons, and ΘM
S is the spin eigenfunction for two-electron systems. 

The orbital of electrons is the product of the radial orbital and the spherical harmonics: A = 

a(r)YlA

mA(q , φ) and B = b(r)YlB

mB(q , φ). Because a and b are functions of r, the HF method can 

include the electron-positron correlation effects perfectly. In case of A = B and A ≠ B, Eq.(6) is the 

RHF and the SEHF wave function, respectively. Accordingly, the SEHF method can include the 

electron-electron radial correlation effect. The electron radial functions a and b are expanded with 

basis functions f i:

a =  Ci
a f i� (7)

and

b =  Ci
b f i .� (8)

The coefficients Ci
a and Ci

b are variationally determined. A set of equations for these coefficients is 

derived by minimizing the functional

L = E – la(〈a｜a〉 – 1) – lb(〈b｜b〉 – 1)� (9)

with respect to a and b. Here, la and lb are Lagrange multipliers, and E is the total energy 

E =            .� (10)
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By setting the first variation in L equal to zero, the following equations are obtained: 

   〈f ib｜H – E｜f jb + (–1)Sbf j〉Cj
a = ∈a   〈f i｜f j〉Cj

a� (11)

and

   〈af i｜H – E｜af j + (–1)Sf j a〉Cj
b = ∈b  〈f i｜f j〉Cj

b ,� (12)

where ∈a and ∈b are new Lagrange multipliers. Eqs.(11) and (12) must be solved by the self-

consistent field procedure.

The mass polarization operator in Eq.(5) can be written as

∇
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with

∇± =      ± i      ,� (14)

where i = √ –1 . In the spherical coordinate, these operators are rewritten as
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where l+ and l– are angular momentum ladder operators. Acting operators (15) and (16) on an atomic 

orbital a(r)Yl
m(θ , φ), the following formulas can be obtained:
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In this work, matrix elements for the mass polarization vanish because HF wave functions of Ps– are 

constructed with only s-orbitals.

3. COMPUTATIONAL ASPECTS

The ground state of Ps– is 1S, and hence our wavefunction becomes 

Y =      [a(r
1
)b(r

2
) + b(r

1
)a(r

2
)]Θ

0
0� (19)

with

Θ
0
0 =      [a(1)b(2) – b(1)a(2)] .� (20)

Electron radial orbitals of the RHF and SEHF wave functions are expanded with B-spline sets 

which consist of N-term Kth-order B-splines on a knot sequence defined on an interval [0, R]. The 

exponential knot sequence was used with endpoints of K-fold multiplicity. Because the first and 

last terms of the B-splines with K-fold multiplicity are nonzero at r = 0 and r = R, respectively, the 

N-term B-spline set was constructed omitting them, in order to satisfy the boundary conditions. 

The parameters N and K of the B-spline sets were N = 100 and K = 9. The knot sequences were 

constructed of the initial interval R
1
 = 10–4 and R = 90, 100, 110, 120, and 130 au.

Eqs.(11) and (12) are solved by the self-consistent field procedure. Accordingly, it is important 

to prepare appropriate initial orbitals. We first calculated the total energy using single exponential 

functions e–zr, and obtained nonlinear parameters z  which minimize the total energy. We then 

obtained coefficients of B-spline expansions which reconstructed the optimized e–zr by solving the 

following equation:

(–          –   r–1)  Ci Bi,K(r) = ∈  Ci Bi,K(r)� (21)

where m  is the reduced mass of the electron and the positron, i.e. m  = 0.5. We employed coefficients 

obtained from Eq.(21) as the initial coefficients Ci
a and Ci

a to calculate Eqs.(11) and (12) self-

consistently.

We calculated the averaged inter-particle distances 〈r1〉 and 〈r12〉, the virial ratio h , the electron-

positron cusp n
ep

, and the electron-positron pair annihilation rate Γ by using RHF and SEHF wave 

functions. The virial ratio h  is defined as

h = –      ,� (22)
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where 〈V〉 and 〈T〉 are the expectation values of the potential and kinetic energy, respectively. The 

exact virial ratio is 2. The electron-positron cusp n
ep

 is calculated by

n
ep

 = –                | r=0

 ,� (23)

where r  is the spherical averaged electron density. The exact n
ep

 value is     . The electron-positron 

pair annihilation rate is 

Γ = 2πa4     1 – a(    –     )                ,� (24)

where d  is Dirac’s delta function, a  is the fine structure constant, c is the speed of light, and a
0
 is the 

Bohr radius. Eq.(24) includes the triplet lifetime18 and a radiative correction for the singlet lifetime19.

4. RESULTS AND DISCUSSION

For the ground state of Ps–, we performed both the RHF and SEHF calculations. The total energy 

and several expectation values were calculated by using the obtained wave functions. We obtained 

8-digit results from all calculations.

First, let us compare the results given by the RHF and SEHF methods. Table 1 shows the 

total energy and the electron-positron annihilation rate of the ground state of Ps–. The total 

energy obtained from the RHF calculation is higher than that of Ps. The RHF method results in a 

qualitatively incorrect total energy for Ps–. On the contrary, the SEHF method gives the total energy 

which is lower than that of Ps. That is the reason why the electron-electron radial correlation effect is 

introduced. The electron-positron pair annihilation rate is also improved by introducing the electron-

electron radial correlation effect. Therefore, it is important for Ps– to include the electron-electron 

correlation effects as well as the electron-positron correlation effects.

The RHF and SEHF calculations were carried out by using B-spline sets with R = 90, 100, 110, 

120, and 130. The total energy and the expectation values obtained from RHF calculations are 

independent of R within a range of R under consideration. SEHF calculations yield the results which 
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Table 1. Total energy (E) and electron-positron pair annihilation rate (Γ ) of Ps–.

–E (hartree) Γ (109s–1)

RHF 0.24396487 1.4582933

SEHF 0.25691975 1.8975601
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depend on values of R. Table 2. summarizes the total energy, the virial ratio, the averaged inter-

particle distances 〈r1〉 and 〈r12〉, the electron-positron cusp value, and the electron-positron pair 

annihilation rate given by SEHF calculations for each value of R. The total energy for R = 110, 120, 

and 130 is the lowest value. The virial ratios for R = 120 and 130 exhibit 8-digit accuracy. Hence, 

the B-spline set with R < 110 is unsuitable for Ps– calculations. This shows that Ps– is a very defuse 

system. The electron-positron cusp value given by the B-spline set with R = 120 is in agreement to 

8-digits of the exact value. Consequently, the 100-term B-spline set with R = 120 is suitable for the 

SEHF calculation of Ps–. 

We compare our results with highly accurate ones given by Frolov10 below. Table 3 summarizes 

the total energy, the ionization potential (IP), the averaged inter-particle distances 〈r1〉 and 〈r12〉, 

and the electron-positron pair annihilation rate given by RHF, SEHF, and Frolov10. Although Frolov’s 

results published in 200711 are the most accurate, we compare our results with Frolov’s results 

published in 199910 because they are in agreement to an 8-digit accuracy each other. To calculate 

ionization potentials, the conversion factor 27.2113961 eV/hartree is employed. 

For the total energy, the SEHF calculation gives 98.1% of Frolov’s total energy. Although it is a 

simple method, the results of the total energy value are very reasonable. The difference between 

SEHF and Frolov’s total energies is 0.00508520 hartree; this is caused by a lack of the electron-

electron angular correlation effect. Although the RHF calculation yields 93.1% of Frolov’s total 

energy, the RHF ionization potential is a negative value because the ionization potential is small.

For the electron-positron pair annihilation rate, the RHF and SEHF calculations yield 69.9% 

and 91.0% of Frolov’s value, respectively. The SEHF method gives considerably good values for 

the electron-positron pair annihilation rate. Compared with the RHF value, the electron-electron 

Table 2.	 Total energy (E), virial ratio (η ), averaged inter-distances (〈r1〉 and 〈r12〉), electron-positron cusp 

value (ν ep), and electron-positron pair annihilation rate (Γ ) given by SEHF calculations for each 

value of R.

R (au) 90 100 110 120 130

–E (hartree)   0.25691973   0.25691974   0.25691975   0.25691975   0.25691975

h   1.9999992   1.9999999   2.0000000   2.0000000   2.0000000

〈r1〉 (au)   6.2352184   6.2353969   6.2354380   6.2354473   6.2354493

〈r12〉 (au) 10.053512 10.053864 10.053946 10.053964 10.053968

n ep   0.49999997   0.49999997   0.49999998   0.50000000   0.49999994

Γ (109s–1)   1.8975596   1.8975599   1.8975600   1.8975601   1.8975601
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radial correlation effect improves the electron-positron pair annihilation rate by 20.1% of Frolov’s 

value. Hence, the electron-electron correlation effects are also important in calculating an accurate 

electron-positron pair annihilation rate. 

For the averaged inter-particle distances, the RHF method underestimates both of 〈r1〉 and 〈r12〉. 

On the contrary, the SEHF method overestimates both the values. The errors of RHF calculations 

are smaller than those of SEHF calculations. Although the RHF and SEHF wave functions include 

the electron-positron distances, calculations of 〈r1〉 need to include electron-electron correlation 

effects.

Based on the above discussion, we conclude that introducing the electron-electron radial 

correlation effect is important for calculations in obtaining the accurate total energy and expectation 

values. The total energy and the expectation values are further improved by introducing the 

electron-electron angular correlation effect. Therefore, it is of particular interest to estimate the 

contributions to the total energy and the expectation values from higher angular momentum orbitals 

in the CI calculation. 

Although we tried to calculate the 3S state of Ps–, we could not obtain an energetically stable 

root. Because electron spin multiplicity is a triplet, the electron-electron correlation energy may be 

small. Hence, calculations that considered the electron-electron correlation effects may also result 

in energetically unstable roots. However, it is expected that electronic triplet spin states of Ps– may 

stabilize on white dwarfs and neutron stars (i.e. Ps– in strong magnetic fields) because magnetic 

fields lower energies of high spin states. It is our continued interest to calculate total energies and 

electron-positron pair annihilation rates for high spin states of Ps– in strong magnetic fields. The 

study of Ps– in strong magnetic fields and CI calculations for the ground state of Ps– are in progress. 

Table 3.	 Total energy (E), ionization potential (IP), averaged inter-particle distances (〈r1〉 and 〈r12〉), and 

electron-positron pair annihilation rate (Γ ) given by RHF, SEHF, and Frolov.

–E (hartree) IP (eV) 〈r1〉 (au) 〈r12〉 (au) Γ (109s–1)

RHF1 0.24396487 −0.16422431 5.0079193   7.4785480 1.4582933

SEHF1 0.25691975   0.18829606 6.2354473 10.053964 1.8975601

Frolov2 0.2620050702329757   0.326674721 5.48963325238   8.54858065516 2.086122114
1 This work.
2 Reference 10.
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