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An approximate atomic two-electron kinetic integral  

using B-splines

Shiro L. Saito

Abstract

An approximate atomic two-electron kinetic integral formula and its numerical check are 

presented. The approximation is carried out using the incomplete resolution of identity constructed 

from B-spline sets. The resulting formula is sums of products of one-electron kinetic and two-

electron integrals. The numerical accuracy of the approximation depends on parameters of the 

B-spline sets. Consequently, the optimal parameters of a B-spline set which can give highly accurate 

integral values are determined.

1. INTRODUCTION

The Hylleraas-type method1 is a powerful quantum mechanical computational method and is able 

to provide highly accurate atomic energies and properties. A feature of Hylleraas-type wave functions 

is to explicitly include inter-electronic coordinates. For example, a Hylleraas-type wave function for 

a two-electron atom of S-state is written as

Ψ=    Cn1, n2, n12
 A r12

n12 (n1, ζ1)1 (n2, ζ2)2 Θ  (1)

where r12 is the inter-electronic coordinate, Θ  is a spin function, A is the antisymmetrizer, and 

(n, ζ)i is an s-type Slater-type function (STF):

(n, ζ )i≡ri
n e−ζ ri Y0

0 (θ , φ) (2)

Unfortunately, it is difficult to apply the Hylleraas-type method to many-electron systems because 

many-electron integrals are required. Many-electron integrals have very complicated formulas, and 

their numerical computational load is quite heavy. In particular, the kinetic integral formula is very 

complicated.

∑
n1, n2, n12
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The formula for a two-electron kinetic integral is also complicated. Calculations of the wave 

function (1) require the following two-electron kinetic integral:

〈r12
n12 (n1, ζ1)1 (n2, ζ2)2 │ −  ∇1

2 │ r12
n12´  (n1́, ζ 1́ )1 (n2́ , ζ 2́ )2〉

=  (n1 n1́+  n1 n12´ +  n1́ n12)〈(n1, ζ1)1 (n2, ζ2)2 │ r1
−2 r12

n12+n12
´ │ (n1́, ζ 1́ )1 (n2́ , ζ 2́ )2 〉

−  (n1 ζ 1́+n1́ ζ1+  n12´  ζ1+  n12 ζ 1́)〈(n1, ζ1)1 (n2, ζ2)2 │ r1
−1 r1

n12+n12
´ │ (n1́, ζ 1́ )1 (n2́ , ζ 2́ )2 〉

+  ζ1 ζ 1́ 〈(n1, ζ1)1 (n2, ζ2)2│r12

n12+n12
´ │(n1́, ζ 1́ )1 (n2́ , ζ 2́ )2 〉

+  (n12 n12´ +  n1 n12´ +  n1́  n12)〈(n1, ζ1)1 (n2, ζ2)2│r12

n12+n12´ −2│(n1́ , ζ 1́ )1 (n2́ , ζ 2́ )2 〉

−  (n1 n12´ +n1́ n12)〈(n1, ζ1)1 (n2, ζ2)2│r1
−2 r2

2 r12

n12+n12
´ −2│(n1́ , ζ 1́ )1 (n2́ , ζ 2́ )2 〉

−  (n12 ζ 1́+n12´  ζ1)〈(n1, ζ1)1 (n2, ζ2)2│r1 r12

n12+n12
´ −2│(n1́ , ζ 1́ )1 (n2́ , ζ 2́ )2 〉

+  (n12 ζ 1́+n12´  ζ1)〈(n1, ζ1)1 (n2, ζ2)2│r1
−1 r12

n12+n12
´ −2│(n1́ , ζ 1́ )1 (n2́ , ζ 2́ )2 〉. (3)

Although this formula is very complicated, it is possible to simplify it. The resolution of identity 

(RI) reduces the two-electron kinetic integral to sums of products of one-electron kinetic and 

two-electron integrals. This procedure was applied to many-electron integrals by Kutzelnigg.2 The 

final formula of the two-electron kinetic integral has infinite summations. For actual numerical 

calculations, the RI has to be approximated using an incomplete set. The use of an incomplete RI 

constructed from any flexible function may provide highly accurate numerical results. A B-spline set 

is suitable for the construction of an incomplete RI.

The B-splines of order K {Bi.K} are piecewise polynomials of degree K − 1 on a knot sequence in 

a cavity of radius R. The knot sequence {ti} is a set of points defined on an interval [0, R].3,4 Bi,K(r) 

is nonzero in the interval [ti, ti+K). The advantage of B-splines is that they are very flexible and are 

relatively free from computational linear dependence. It has been shown that atomic calculations 

with B-splines provide highly accurate energies and properties.6-8 Therefore, it is expected that an 

incomplete RI constructed from a B-spline set may give highly accurate two-electron kinetic integral 

values. The purpose in this study is to formulate the approximate two-electron kinetic integral using 

the incomplete RI and to check its numerical accuracy.
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Section 2 presents formulas of the two-electron kinetic integral using the complete RI and 

its approximation. In Section 3, computational details are presented. Section 4 summarizes the 

relative errors of the approximate two-electron kinetic integrals and discusses the accuracy of the 

approximation. Optimal parameters of the B-spline set are also determined.

2. THEORY

In this section, we reduce the two-electron kinetic integral using an incomplete RI. Hereafter,  A, B, 

C, ... express the atomic orbitals: A = a(r)YIA

mA(θ , φ ). In particular, I, J, K, ... express complete orbitals. 

The RI is written as

P =    ｜I J〉〈IJ｜. (4)

Eq.(4) employs a simple notation:

    ≡       . (5)

Using the RI, the two-electron kinetic integral is written as follows:

〈r12
m AB｜T1｜r12

n  CD〉=〈r12
m AB｜PT1 P｜r12

n CD〉 (6)

=    〈AB｜r12
m｜IJ〉〈IJ｜T1｜KL〉〈KL｜r12

n ｜CD〉

=    〈AB｜r12
m｜IJ〉〈I｜T1｜K〉〈KJ｜r12

n ｜CD〉

=          Λ l,l´
k1,k2  (ai, bj)k1

m (i｜T1｜j)l (ck, dj)k2

n (7)

with

(i｜T1｜j)l=  dr1 i(r1 )  −     +       j(r1), (8)

(ab, cd)k
n=   Dn

k,s   dr1   dr2 a(r1)b(r1)      c(r2 )d(r2 ), (9)

and

Λ l,l´
k1,k2 =    ck1(lA mA, lm) ck2(lm, lC mC)    ck1(l´ m´, lB mB)ck2(lD mD, l´ m´), (10)

where T1=−  ∇1
2. Thus, the two-electron kinetic integral is reduced to sums of products of one-

∑
IJ

∑
I

∞

∑
i=1

∞

∑
lI=0

lI

∑
mI=−lI

∑
IJKL

∑
IJKL

k1max

∑
k1=0

k2max

∑
k2=0

∞

∑
l=0

∞

∑
l´=0

∑
ijk

1

2

d2

dr1
2

l(l+1)

2r1
2

s
max

∑
s=0

r<
k+2s

r>
k+2s−n

l

∑
m=−l

l´

∑
m´=−l´

1

2
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electron kinetic integrals (i｜T1｜j)l and two-electron integrals (ai, bj)k
n . In Eq.(9), Dn

k,s is a coefficient 

given by:

Dn
k,s =            (11)

where [a]n is Pochkammer’s symbol. For n odd we have smax =    , whereas for n even,  

smax  =    − k. In Eq.(10), ck(lm, l´ m´) is a Condon-Shortley coefficient5 defined by:

ck(lm, l´ m´) = (    )   Yl
m*(θ , φ)Yk

m−m´(θ , φ)Yl´
m´ (θ , φ) sin2θ  dθdφ . (12)

The values of k1max and k2max in Eq.(7) are

   , (m: even)     , (n: even)
k1max =    , k2max =    . (13)

  ∞, (m: odd)    ∞, (n: odd)

Let us construct an incomplete RI from a B-spline set. The radial functions i(r) can take any 

orthonormal set. In this work, the radial functions i(r) are expanded using a unitary matrix U which 

diagonalizes the overlap matrix and eigenvalues si of the overlap matrix of the N-term B-spline set:

i(r) =   Uij sj
−   Bj+1,K(r),          (i=1, …, N). (14)

Thus, the summations for i, j, and k in Eq.(7) become finite, and hence numerical calculations 

become feasible.

3. COMPUTATIONAL ASPECTS

This section presents computational details of the approximate two-electron kinetic integrals. We 

examine the two-electron kinetic integrals over 1s-type STFs as:

I(m, n)≡〈r12
m AA｜T1｜r12

n AA〉, (15)

where A = a(r) Y0
0 (θ , φ) and a(r) = e− ζr. In this case, Eq.(7) becomes

〈r12
m AA｜T1｜r12

n AA〉=   (2l + 1)− 2    (ai, aj)l
m (i｜T1｜k)l (ak, aj)l

n. (16)

 −     
k

  k −    
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The value of lmax depends on the parity of m and n, the values of which are listed in TABLE 1．

The radial function re− ζr is expanded with an N-term B-spline set, namely,

re− ζr ≈   Ci Bi+1,K (r). (17)

where Ci are the linear expansion coefficients. This B-spline expansion of STF is highly accurate.9 We 

determine Ci by solving the system of linear equations as:

     
0

R
drBi+1,K (r) Bj+1,K (r) Cj =   

0

R
drBi+1,K (r)re− ζr,  (i=1, ..., N). (18)

These integrals are evaluated by the Gauss integration procedure. 

In this work, all radial functions are expanded with a common B-spline set. In this case, necessary 

integrals are as follows:

(Bi,K , Bj,K),  (Bi,K｜T1｜Bj,K)λ,  (Bi,K Bj,K, Bk,K Bl,K)λ
m, (19)

where (Bi,K , Bj,K) is the one-electron overlap integral. We use 100-term B-spline sets with R = 60 

constructed on the exponential knot sequences, with endpoints of K-fold multiplicity. The 

parameters K and R1 of the B-spline sets take all combinations of

K = 9, 11, 13, 15, (20)

R1= 10−2, 10−3, 10−4, 10−5, (21)

where R1 is the initial interval of the knot sequence. 

We examine I(1, 0), I(2, 0), I(1, 1), I(2, 1), and I(2, 2) with ζ=0.5, 1, 5, and 10. Here, I(1, 1) has an 

infinite summation. We calculate I(1, 1) using lmax=20. As a measure of accuracy of the integral, we 

use the relative error

N

∑
i=1

N

∑
j=1

TABLE 1. Values of lmax of Eq.(16).

m n lmax

even even min(  ,   )
even odd   

odd even   

odd odd ∞

m

2

n

2

m

2

n

2
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|            |, (22)

where ISTF(m, n) is an exact integral value calculated using Eq.(3). All the calculations are performed 

at double precision.

4. RESULTS AND DISCUSSION

We calculated the approximate two-electron kinetic integrals I(1, 0), I(2, 0), I(1, 1), I(2, 1), 

and I(2, 2) using Eqs.(15) and (16). In this section, we discuss the dependence of the accuracy of  

I(m, n) on parameters m and n and on the B-spline sets.

TABLEs 2 and 3 summarize the relative errors for I(1, 0), I(2, 0), I(2, 1), and I(2, 2). First, we 

discuss the dependence of the accuracy of I(m, n) with each ζ  on m and n. These integrals have 

almost the same accuracy regardless of m and n, except for I(m, n) with ζ = 10. For I(m, n) with 

ζ = 10, the relative error of only I(1, 0) is smaller than that of the other I(m, n). The incomplete RI 

may similarly act on I(m, n) with small ζ , regardless of m and n.

Next, we discuss the accuracy of the B-spline sets for I(m, n) with each ζ . For I(m, n) with ζ=0.5, 

the B-spline sets with R1=10−2 and 10−3 yield accurate integral values. The B-spline sets with R1=10−4, 

except at K=15, also give accurate integral values. Hence, these B-spline sets well approximate the RI 

for I(m, n) with ζ=0.5. However, the B-spline sets with R1=10−5 are unsuitable for the incomplete RI 

because they give larger relative errors. In addition, I(m, n) with ζ=1 have almost the same accuracy 

as I(m, n) with ζ=0.5. The B-spline sets that are suitable for I(m, n) with ζ=0.5 can be used for the 

calculations of I(m, n) with ζ=1.

The use of large ζ  changes the dependence of the accuracy of I(m, n) on the B-spline sets. The 

relative errors for I(m, n) with ζ=5 and 10 are slightly larger than those for I(m, n) with ζ=0.5 and 

1. The dependence of the relative errors on K increases with decreasing R1. The B-spline sets with 

R1=10−5 yield larger relative errors than those with R1≥10−4. In particular, this is conspicuous for 

I(2, 2) with ζ=5 and 10. From the above discussion, we conclude that the B-spline set with K=11 and 

R1=10−3 gives accurate values of I(m, n) with ζ=0.5 − 10. This B-spline set may be suitable for the 

construction of the incomplete RI for the two-electron kinetic integrals. 

I(m, n) − ISTF(m, n)

ISTF(m, n)
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TABLE 2.  Relative errors of approximate two-electron kinetic integrals I(m, n) for ζ = 0.5 and 1. A(B) implies 

A ×10 .

ζ=0.5 ζ=1
m, n K=9 K=11 K=13 K=15 K=9 K=11 K=13 K=15

R1=10−2

1 0 6.4(−15) 1.9(−14) 1.9(−14) 6.4(−14) 1.0(−14) 6.1(−15) 2.9(−14) 2.0(−15)
2 0 3.2(−14) 6.7(−15) 2.5(−14) 8.2(−14) 1.3(−14) 4.3(−14) 5.0(−14) 1.1(−14)
2 1 0.0 0.0 3.2(−14) 8.5(−14) 8.8(−15) 8.8(−15) 5.8(−15) 1.2(−13)
2 2 1.3(−14) 6.4(−15) 6.4(−15) 2.4(−13) 8.2(−15) 1.6(−14) 8.2(−15) 5.7(−13)

R1=10−3

1 0 0.0 6.4(−15) 2.6(−14) 9.0(−14) 6.1(−14) 1.2(−14) 4.1(−15) 8.4(−14)
2 0 5.0(−15) 1.3(−14) 1.7(−14) 9.7(−14) 3.5(−14) 4.3(−14) 3.4(−14) 3.6(−14)
2 1 2.3(−15) 1.8(−14) 2.3(−15) 1.1(−13) 5.0(−14) 5.8(−15) 2.9(−14) 2.4(−13)
2 2 2.2(−14) 3.3(−15) 1.6(−14) 3.1(−13) 5.7(−14) 1.6(−14) 4.1(−14) 3.2(−12)

R1=10−4

1 0 1.9(−14) 3.6(−13) 2.2(−13) 2.7(−11) 2.3(−14) 1.2(−13) 1.2(−12) 3.4(−13)
2 0 3.2(−14) 6.9(−13) 1.3(−13) 4.3(−11) 4.1(−14) 5.2(−14) 9.8(−13) 7.7(−13)
2 1 1.8(−14) 6.0(−13) 2.9(−13) 3.8(−11) 2.9(−15) 8.2(−14) 7.7(−13) 9.4(−12)
2 2 1.9(−14) 7.9(−13) 5.1(−13) 6.2(−11) 0.0 9.0(−14) 8.5(−13) 7.1(−11)

R1=10−5

1 0 1.2(−10) 2.5(−12) 4.3(−10) 1.1(−8) 2.1(−11) 4.3(−11) 1.2(−10) 2.5(−9)
2 0 1.9(−10) 1.3(−11) 2.4(−10) 1.5(−8) 2.7(−11) 4.5(−11) 1.8(−10) 3.4(−9)
2 1 1.4(−10) 3.7(−10) 5.4(−10) 1.1(−8) 2.0(−11) 6.7(−11) 1.9(−10) 2.2(−9)
2 2 1.4(−10) 7.8(−10) 8.6(−10) 1.0(−8) 1.8(−11) 7.2(−11) 2.1(−10) 4.4(−9)

B

TABLE 3.  Relative errors of approximate two-electron kinetic integrals I(m, n) for ζ =5 and 10. A(B) implies 

A ×10 .

ζ=5 ζ=10
m, n K=9 K=11 K=13 K=15 K=9 K=11 K=13 K=15

R1=10−2

1 0 1.3(−14) 4.5(−14) 3.2(−14) 1.9(−13) 3.7(−14) 2.2(−13) 2.0(−13) 4.1(−12)
2 0 7.0(−13) 2.1(−12) 2.3(−14) 7.1(−12) 1.1(−11) 7.2(−11) 1.6(−11) 1.3(−10)
2 1 2.6(−13) 4.4(−13) 2.7(−14) 4.5(−12) 1.0(−11) 1.6(−11) 1.2(−11) 6.0(−11)
2 2 1.7(−13) 9.8(−13) 5.7(−13) 1.7(−10) 9.8(−12) 1.1(−11) 1.4(−11) 1.2(−9)

R1=10−3

1 0 3.8(−14) 1.5(−13) 9.0(−14) 3.8(−14) 1.4(−14) 1.8(−13) 5.3(−14) 9.0(−14)
2 0 1.0(−12) 2.6(−12) 2.6(−12) 1.6(−12) 8.9(−12) 7.4(−11) 2.0(−11) 2.3(−11)
2 1 1.2(−12) 4.1(−14) 5.9(−13) 1.5(−11) 1.2(−11) 1.9(−11) 1.0(−11) 8.8(−11)
2 2 1.1(−12) 7.0(−13) 4.5(−12) 6.0(−10) 1.6(−11) 2.1(−11) 1.3(−11) 1.1(−8)

R1=10−4

1 0 1.6(−13) 2.6(−13) 1.6(−13) 1.3(−14) 3.2(−13) 1.1(−13) 1.4(−13) 3.5(−14)
2 0 1.0(−12) 7.4(−12) 1.5(−12) 2.9(−12) 4.4(−11) 3.7(−11) 8.5(−11) 1.9(−11)
2 1 1.8(−13) 4.9(−12) 2.0(−12) 3.2(−10) 4.4(−12) 9.1(−12) 2.1(−11) 1.8(−9)
2 2 1.0(−12) 5.7(−12) 1.0(−10) 4.0(−8) 4.4(−12) 2.9(−11) 1.2(−9) 5.5(−7)

R1=10−5

1 0 3.8(−14) 2.3(−13) 1.9(−11) 4.0(−11) 1.1(−13) 5.8(−13) 1.5(−12) 1.1(−12)
2 0 1.1(−12) 2.9(−12) 9.8(−12) 5.7(−11) 1.2(−10) 3.2(−11) 1.1(−10) 1.9(−10)
2 1 1.2(−12) 1.3(−12) 5.9(−12) 8.3(−10) 3.1(−11) 1.2(−11) 2.2(−12) 2.5(−8)
2 2 1.8(−12) 3.4(−12) 8.1(−10) 1.3(−7) 1.6(−11) 1.8(−11) 5.3(−9) 7.8(−6)

B
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TABLE 4. Exact and approximate values and relative errors of I(1,1). A(B) implies A ×10 .

ζ Exact value Approximate value relative error
0.5 0.8000 0000 0000 0000(1)  0.7999 9472 7299 5467(1) 6.6(-6)
1 0.1250 0000 0000 0000(0)  0.1249 9912 5358 7063(0) 7.0(-6)
5 0.8000 0000 0000 0000(-5)  0.7999 9440 7717 9909(-5) 7.0(-6)

10 0.1250 0000 0000 0000(-6)  0.1249 9912 7658 9780(-6) 7.0(-6)

B

We attempted to use another knot sequence:

0, R1, R1(1 + β), R1 (1 + β + β2), …, R, (23)

where β  is the parameter characterizing the distribution of the knots. Here β  is chosen to satisfy the 

following condition:

R = R1 (1 + β + β2 + ...  + βN−K+2),          (β  ≥ 1). (24)

We call this knot sequence a “geometric series knot sequence”.6 Although the first point of this 

knot sequence is R1, the knot distribution at large R is similar to the exponential knot sequence 

distribution with the first interval 10R1. Hence, the geometric series knot sequence is suitable for 

calculating diffuse atomic orbitals. For calculations of I(m, n), the results when using the geometric 

series knot sequence are almost the same as those using the exponential knot sequence. Both knot 

sequences have the same quality for the incomplete RI. To improve the accuracy of the incomplete 

RI, the number of terms of the B-spline set has to be increased.

Finally, we discuss the convergence of I(1, 1) against the l value. TABLE 4 lists I(1, 1) values that 

are given by the B-spline set with K=13 and R1=10−3, along with the exact values. All the relative 

errors are very large, namely, 7×10−6. FIG. 1 plots the convergence of I(1, 1) against the value of l. 

As shown in Fig.1, the convergence of all the integral values is very slow. Hence, lmax=20 is too small. 

The value of lmax has to be very large number. However, the use of a very large lmax value is impractical. 

To obtain converged values using a small lmax value, any convergence acceleration method has to 

be applied, e.g., the Aitken's Δ2 method11, the Levin u transformation method12, an asymptotic-

expansion method13, etc. Improvements in the convergence of I(1, 1) are being carried out.
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FIG. 1. Convergence of I(1, 1) against the value of l.




