
Abstract

An extension of Ore's wave function for positronium hydride (PsH), and computational results based

on it are presented. To improve the flexibility of Ore's PsH wave function, the wave function is expanded

using Gaussian functions, and a set of equations is derived for the expansion coeffcients. The extended

Ore's PsH wave function gives a positronium binding energy of 0.117 eV and a two-photon annihilation

rate of 2.175 ns－1. Ore's results are improved by 0.049 eV and 0.302 ns－1. Inclusion of electron correlation

effects further improves Ore's results. Application of the Ore-type wave function to many-electronic

positronium-atom complexes is considered.

I. INTRODUCTION

The antiparticle of the electron, the positron (e＋), forms bound states with various elec-

tronic systems. The simplest bound state is positronium (Ps), which consists of one positron

and one electron. The existence of Ps－, Ps＋2 , and Ps2 has been predicted theoretically1-4, and

Ps－ and Ps2 have been detected experimentally5, 6. The positron also forms bound states with

atomic and molecular systems, referred to as positronium-atom and positronium-molecule

complexes. Positronium-atom complexes have been extensively studied. In particular,

positronium hydride (PsH) and positronium halides have been detected in experiments7, 8 and

have been studied theoretically9-17 by many researchers. The stability of other complexes has

been also predicted18-23.

The simplest stable positronium-atom complex is PsH, which consists of a hydrogen atom

and positronium. PsH is a prototype of positronium-atom complexes, and plays a significant

role in theoretical studies of positronium-atom complexes. The first theoretical calculation of

PsH was by Ore in 195124. Ore wrote down a spin free PsH wave function of the ground state

(2, 1S) as the product of the 1s eigenfunction of hydrogen atom χH, positronium ψPs, and
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χ'H, which the represents distribution of positronium from the proton :

ΨOre＝S12χH(r1)χ'H(r2)ψPs(r02) (1)

with

χH(r1)＝( 1π)
1
2
exp(－r1), (2)

χ'H(r2)＝( k
3

π )
1
2
exp(－kr2), (3)

and

ψPs(r02)＝( 18π)
1
2
exp(－ 12 r02), (4)

where 0 denotes the positron, 1 and 2 refer to the electrons, k is a variational parameter, and

S12 is the symmetrizer with respect to exchange of 1 and 2. This is a valence-bond-like (VB-

like) wave function. Ore obtained from the wave function the Ps binding energy of 0.068 eV

and the two-photon annihilation rate of 2.045 ns－1, and showed that PsH is energetically sta-

ble. Various theoretical methods have since been applied to PsH in order to refine Ore's result

and develop computational methods which are applicable to many-electronic positronium-

atom complexes. These mehotds include VB-like25, 26, Hartree-Fock (HF)27, configuration in-

teraction (CI)28-32, variational calculation with Hylleraas-type functions (Hylleraas)33-39, the

combined Hylleraas-configuration-interaction method (Hylleraas-CI)40, the coupled pair ap-

proximation (CPA) with Hylleraas-type functions41 , the explicitly correlated Gaussian

(ECG) expansion method42, 43, and quantum Monte Carlo (QMC)44-46. At present, the ECG and

Hylleraas methods give the most accurate energy and two-photon annihilation rate of PsH:

their values are respectively 1.067 eV and 2.459 ns－1. Although the ECG and Hylleraas meth-

ods yield the most accurate results for PsH, it is difficult to apply these methods to many-

electronic positronium-atom complexes because of the many-electron integrals involved.

Ore's PsH wave function is very simple and has a clear physical rationale. Unfortunately,

it suffers from two defects. One is the lack of flexibility of the wave function. The functions

χH and ψPs in the wave function may deform so as to shield positive charge, like a valence

bond wave function of the hydrogen molecule47. The other defect is the absence of most elec-

tron correlation effects. Since the double-occupancy constraint of electrons is relaxed in Ore's

PsH wave function, only a part of the radial electron correlation effect is included. The angu-

lar electron correlation effect is not included.

The present work extends Ore's PsH wave function, and refines the energy and two-photon

annihilation rate of PsH given by Ore. Improvement in the flexibility of Ore's wave function

may be highly significant. To this end, we expand χH, χ'H, and ψPs using Gaussian func-

tions, and derive a set of equations to determine variationally their expansion coefficients.

Gaussian functions for ψPs have a variable representing the positron-electron distance, i.e.
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an explicitly correlated Gaussian function. Although the three-electron integrals over explic-

itly correlated Gaussian functions are required for the present calculations, these integrals

are easily evaluated.

We also attempt to include the rest of electron correlation effect. Usually, CI, CPA, pertur-

bation theory, and so on are used to do this. Most of these methods involve complicated wave

functions. Ore's PsH wave function is characterized by its simple form. To keep the simple

form of the wave function, we apply an effective potential taking into account the electron-

electron Coulomb hole. Such potentials have been proposed by Clementi and co-workers48 and

Panas and Snis49, 50. This work uses the latter potential.

The Ore-type wave function, i.e. the VB-like wave function of a positron and an atom, is

applicable to many-electronic positronium-atom complexes. We also extend the Ore-type

wave function to many-electronic positronium-atom complexes. The matrix elements over

determinantal Ore-type wave functions are formulated.

Below, Section II sets out the theoretical method and computational details of the extended

Ore's PsH wave function. Section III discusses our results and gives the matrix elements over

determinantal Ore-type wave functions for many-electronic positronium-atom complexes.

Section IV summarizes this work.

II. THEORY AND COMPUTATION

We expand χH, χ'H, and ψPs using Gaussian functions as follows :

χH(r1)＝Σ
NH

i＝1

Ci fi (r1), (5)

χ'H(r2)＝Σ
NH

i＝1

C'i fi (r2), (6)

ψPs(r02)＝Σ
NPs

i＝1

Di gi (r02), (7)

where fi(rμ)＝ exp(－ζi r 2μ) (μ＝1, 2 and i＝1, …, NH) and gi(r02)＝ exp(－ζ'ir 202) (i＝1, …,

NPs). Cartesian Gaussian functions xlx y ly z lz exp(－ζi r 2) are used when the electronic orbital

has nonzero angular momentum. The coefficients {Ci}, {C'i}, and {Di} are variationally deter-

mined. A set of equations for this is derived by minimizing the functional

�＝E－λ(〈χH｜χH〉－1)－λ'(〈χ'H｜χ'H〉－1)－λPs(〈ψPs｜ψPs〉－1) (8)

with respect to χH, χ'H, and ψPs. Here, λ, λ', and λPs are Lagrange multipliers, and

E＝H/S; S is the overlap matrix〈ΨOre｜ΨOre〉and H is the matrix〈ΨOre｜�｜ΨOre〉with the

Hamiltonian

�＝－
1
2
(∇2

0＋∇2
1＋∇2

2 )＋r－10 －r－11 －r－12 －r－101 －r－102 ＋r－112 . (9)
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By setting the first variation in �equal to zero, the following equations are obtained :

Σ
NH

j＝1

〈 fi(r1)χ'H(r2)ψPs(r02)｜�－E｜S12fj(r1)χ'H(r2)ψPs(r02)〉Cj＝εΣ
NH

j＝1

〈 fi｜fj〉Cj , (10)

Σ
NH

j＝1

〈χH(r1)fi(r2)ψPs(r02)｜�－E｜S12χH(r1)fj(r2)ψPs(r02)〉C'j＝ε'Σ
NH

j＝1

〈 fi｜fj〉C'j , (11)

Σ
NPs

j＝1

〈χH(r1)χ'H(r2)gi (r02)｜�－E｜S12χH(r1)χ'H(r2)gj(r02)〉Dj＝εPsΣ
NPs

j＝1

〈gi｜gj〉Dj , (12)

where ε＝Sλ, ε'＝Sλ', and εPs＝SλPs, i.e. new Lagrange multipliers. The exact values of

these Lagrange multipliers are zero. These equations are similar to the generalized valence

bond (GVB) equations proposed by Goddard51. They must be solved by the self-consistent

field (SCF) procedure. We refer to this as the Ore-SCF method.

To include electron correlation effects, this work attempts to use an effective potential tak-

ing into account the electron-electron Coulomb hole proposed by Panas and Snis49, 50. They re-

placed r－112 by v(r12):

v(r12)＝2π
－
1
2 ∫

χ

0
ds exp(－s2r 212), (13)

where χ is a cut-off parameter. χ depends on Gaussian functions of electron-electron inter-

action integrals

∫dr1 ∫dr2v(r12) exp(－ζ1r 21－ζ2r 22 ), (14)

and χ is the following form :

χ＝[ζ1＋ζ2

2
＋[ ( ζ1＋ζ2

2 )
2

＋
ζ1ζ2

f 2 ]
1
2 ]

1
2

, (15)

where f is a scale factor; its recommended value is 2.

In the present Ore-SCF calculations, the non-linear parameters {ζi} and {ζ'i} of the

Gaussian sets are individually generated by the relation

ζi＝αβi cosh
i
N

(i＝1, . . . , N), (16)

where αand β are parameters and N is the number of Gaussian functions. This is a simple

extension of the even-tempering method52. The relation (16) generates a set of non-linear pa-

rameters which can adequately express orbitals not only at outer region but also near the

origin.

The two-photon annihilation rate Γ is calculated by

Γ＝neπα3〈ψ｜δ(r0－r1)｜ψ〉, (17)

where n e is the number of electrons, α is the fine structure constant, δ(r0－r1) is the Dirac

delta function, and ψ is a normalized wave function.
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III. RESULTS AND DISCUSSION

A. PsH calculations

We first examine convergence of the total energy and two-photon annihilation rate of Ps

for NPs. Table I summarizes the total energies and two-photon annihilation rates of Ps, to-

gether with their deviations from the exact values. The total energy of Ps rapidly converges

versus NPs. The total energy calculated with a 10-term Gaussian set is almost the same as the

exact value. Convergence of the two-photon annihilation rate is relatively slow, however, be-

cause the Gaussian function is cuspless. The two-photon annihilation rate calculated with a

20-term Gaussian set is the same as the exact value of 2.008 ns－1.

Table II summarizes the total energies and two-photon annihilation rates of PsH obtained

from Ore-SCF calculations for some values of NH and NPs. We denote the total energy and the

two-photon annihilation rate calculated with NH- and NPs-term Gaussian sets as EPsH (NH,

NPs) and ΓPsH (NH, NPs), respectively. Our best Ore-SCF results for PsH are a total energy of

－0.754304 hartree and a two-photon annihilation of 2.157 ns－1, which are respectively EPsH

An extension of Ore's positronium hydride wave function 27

TABLE I. Total energies EPs and two-photon annihilation ratesΓPs of Ps.ΔEPs andΔΓPs denote de-
viations from the exact values. The exact EPs and ΓPs are －0.25 hartree and 2.008 ns－1.

NPs EPs (hartree) ΔEPs (hartree) ΓPs (ns－1) ΔΓPs (ns－1)

2 －0.242906 0.007094 1.107 0.901

4 －0.249576 0.000424 1.658 0.350
6 －0.249960 0.000040 1.853 0.155
8 －0.249995 0.000005 1.933 0.075
10 －0.249999 0.000001 1.961 0.047
12 －0.250000 0.000000 1.977 0.031
14 －0.250000 0.000000 1.995 0.013
16 －0.250000 0.000000 2.003 0.005
18 －0.250000 0.000000 2.006 0.002
20 －0.250000 0.000000 2.008 0.000

TABLE II. Total energies EPsH and two-photon annihilation rates ΓPsH of PsH for NH and NPs.

NPs＝8 NPs＝10 NPs＝20

NH EPsH (hartree) ΓPsH (ns－1) EPsH (hartree) ΓPsH (ns－1) EPsH (hartree) ΓPsH (ns－1)

8 －0.754052 2.085 －0.754056 2.114 －0.754057 2.163

10 －0.754249 2.081 －0.754253 2.110 －0.754254 2.158
12 －0.754288 2.080 －0.754292 2.109 －0.754293 2.157
14 －0.754296 2.080 －0.754300 2.109 －0.754301 2.157
16 －0.754298 2.080 －0.754302 2.109 －0.754303 2.157
20 －0.754299 2.080 －0.754303 2.109 －0.754304 2.157



(20, 20) and ΓPsH (20, 20). At each NPs, the total energy converges slowly to EPsH (20, NPs) ver-

sus NH. EPsH (8, NPs) is higher than EPsH (20, NPs) by 247 μhartree. The two-photon annihila-

tion rate converges rapidly to ΓPsH (20, NPs ) versus NH , and is constant for NH＞10.

Convergence of the total energy of PsH for NPs is rapid. This is similar to the case of Ps.

EPsH (20, 10) is very close to our best total energy EPsH (20, 20); the energy difference is ～ 1

μhartree. On the other hand, the difference between ΓPsH (20, 10) and ΓPsH (20, 20) is large.

It is clear that the total energy depends on NH rather than NPs, and that the two-photon an-

nihilation rate depends strongly on NPs. A Gaussian set of NPs＝20 should be employed in

order to calculate an accurate two-photon annihilation rate.

We now compare our best Ore-SCF results with other works. Table III summarizes the

total energies, Ps binding energies, and two-photon annihilation rates of PsH together with

other works. Our Ps binding energy and two-photon annihilation rate are improved by 0.049

eV and 0.112 ns－1 over Ore's results. This is due to the high flexibility of our wave function.

However, the energy lowering is very small in comparison with the energy difference from

the most accurate energy given by the ECG and Hylleraas calculations38, 39, 42. This may be due

to the lack of electron correlation effects.

The results obtained from replacement of r－112 by v(r12) are also listed in Table III. This cal-

culation method is designated Ore-SCF+corr. Electron correlation effects are included with

f＝2 and 1.15032. The latter f value is optimized to reproduce the total energy of H－. The re-

sults are further improved by inclusion of electron correlation effects. The two-photon anni-

hilation rate approaches the most accurate value. The total energy is far from the most

accurate value, however. A further extension to include electron correlation effects is needed.

We propose a wave function which can take account of angular electron correlation effects,

Ψ＝ΨOre＋Σ
l＝1

Cl S12[ψl (r1)ψ'l (r2)]
(0)
ψPs(r02), (18)

where ψl and ψ'l are mutually non-orthogonal correlating orbitals with angular momen-

tum l, [ψlψ'l](0) is an electron part coupled to the S state, and Cl's are coefficients. This wave
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TABLE III. Comparison with other works of total energies EPsH, Ps binding energies BE, and two-
photon annihilation rates ΓPsH of PsH for NH＝20 and NPs＝20.

Method Reference EPsH (hartree) BE (eV) ΓPsH (ns－1)

Ore-SCF This work －0.754304 0.117 2.157

Ore-SCF＋corr (f＝2) This work －0.759318 0.254 2.234
Ore-SCF＋corr (f＝1.15032) This work －0.770202 0.550 2.353

Ore Refs. 24 and 25 －0.75251 0.068 2.045
Hylleraas Refs. 38 and 39 －0.789197 1.067 2.459
ECG Ref. 42 －0.789197 1.067 2.459
Experiment Refs. 7 and 57 1.1±0.2 2.35



function is determined by variational optimization not only of χH, χ'H, and ψPs, but also of

{ψl }, {ψ'l }, and {Cl }. In other words, this is a multiconfiguration SCF method with non-

orthogonal orbitals. The wave function may be solved by the super-CI procedure53. The re-

sults will be given elsewhere.

B. A further extension

We now consider application of Ore-type wave function to many-electronic positronium-

atom complexes. We derive matrix elements over an N-electron determinantal Ore-type wave

function

Ψp (x 0, x1, x 2,…, xN)＝(N!)
－
1
2 �ψp (x01)χa(x2)χb(x3) … , (19)

where x is a space-spin coordinate, ψp (x01)＝χp(x1)ψPs (x01), {χa } are mutually orthogonal

electron spin-orbitals except for χp. Here,�is the unnormalized antisymmetrizer for N elec-

trons :

�＝∑
P

(－1)pP, (20)

where P is a permutation operator and p is the parity of the permutation. The Hamiltonian

of N-electronic positronium-atom complexes in atomic units is

�＝Σ
N

i＝1

h(i)＋Σ
N

i＜j

r－1ij ＋h＋(0)－Σ
N

i＝1

r－10i , (21)

where

h(i)＝－
1
2
∇2
i－Zr－1i , (22)

h＋(0)＝－
1
2
∇2

0＋Zr－10 , (23)

and Z is the nuclear charge. We have to derive the overlap, one-electron, one-positron, posi-

tron-electron, and electron-electron matrix elements. The matrix elements of any N-electron

operator O over Ψp and Ψq are respectively written as

〈Ψp｜O｜Ψq〉＝∫dx0∫dx1 …∫dxN[ψp (x01)χa(x2)…]O[�ψp (x01)χa(x2)…]. (24)

This formula is obtained using the fact that�is commutable with O, and O is symmetric for

electron permutation. Each matrix element can be derived with the help of diagrams, similar

to the diagrams of Bonham54, 55. The diagrams for overlap, one-positron, one-electron, posi-

tron-electron, and electron-electron matrix elements are shown in FIG. 1-5. A diagram of

this sort consists of a circle, solid circles, and two solid lines, which respectively express a

positronic coordinate, electronic coordinates, and two positron-electron distances (r0 i). A

vertex and broken line in FIG. 2 and 3 represents a one-body operator. A broken line in FIG.

4 and 5 represents a two-body Coulomb interaction.
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FIG. 3. Diagrams for one-electron matrix element
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FIG. 4. Diagrams for positron-electron interaction matrix element
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FIG. 5. Diagrams for electron-electron interaction matrix element



Overlap matrix elements are easily derived. The diagrams a and b in FIG. 1 are respec-

tively two- and three-electron integrals, and the resulting formula is

〈Ψp｜Ψq〉＝〈ψp｜ψq〉－∑
a

〈ψpχa｜χaψq〉. (25)

Here we simply write integrals by omitting positronic and electronic coordinates; functions

in the bra and the ket are arranged in order of electronic coordinate number :

〈ψpχa｜χaψq〉≡〈ψp(01)χa(2)｜χa(1)ψq(02)〉. (26)

In FIG. 2, a vertex with broken line represents an one-positron operator h＋(0). The diagrams

a and b in FIG. 2 respectively refer to two-electron and three-electron integrals with h＋(0).

The matrix element of h＋(0) is

〈Ψp｜h＋(0)｜Ψq〉＝〈ψp｜h＋｜ψq〉－∑
a

〈ψpχa｜h＋｜χaψq〉. (27)

The matrix element of a one-electron operator Σi h(i) is derived from four-type diagrams in

FIG. 3. The diagrams a and b in FIG. 3 are the products of a one-electron integral of Σi h(i)

and an overlap integral. The resulting matrix element formula is

〈Ψp｜Σ
i＝1

h(i)｜Ψq 〉＝∑
a

〈χa｜h｜χa〉[〈ψp｜ψq〉－∑
b

〈ψpχb｜χbψq〉]

＋∑
a, b

〈χa｜h｜χb〉〈ψpχb｜χaψq〉

＋〈ψp｜h｜ψq〉－∑
a

〈ψpχa｜h(1)＋h(2)｜χaψq〉. (28)

The matrix element of operator Σi r－10i is expressed by four-type diagrams as shown in FIG.

4. This operator is a positron-electron interaction with sign reversed. The diagram d in FIG.

4 is a four-electron integral. The resulting matrix element is

〈Ψp｜Σ
i＝1

r－10i｜Ψq 〉 ＝〈ψp｜r－101｜ψq〉＋∑
a

〈ψpχa｜r－102｜ψqχa〉

－∑
a

〈ψpχa｜r－101 ＋r－102｜χaψq〉

＋∑
a, b

〈ψpχaχb｜r－102 (1－P12)｜χaχbψq〉. (29)

where P12 is the permutation of electron 1 and 2. The electron-electron interaction matrix ele-

ment is complicated due to electron exchange, and is expressed by five-type diagrams as

shown in FIG. 5. The diagrams a and b in FIG. 5 are the products of a two-electron interac-

tion integral and an overlap integral. The diagram e expresses a four-electron integral. The

resulting electron-electron interaction matrix element is
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〈Ψp｜Σ
i＜j

r－1ij ｜Ψq 〉 ＝∑
a＜b

〈χaχb｜r－112 (1－P12)｜χaχb〉[〈ψp｜ψq〉－∑
c

〈ψpχc｜χcψq〉]

＋∑
a＜b
∑
c

〈χaχb｜r－112 (1－P12)｜χcχb〉〈ψpχc｜χaψq〉

＋∑
a＜b
∑
c

〈χaχb｜r－112 (1－P12)｜χaχc〉〈ψpχc｜χbψq〉

＋∑
a

〈ψpχa｜r－112 (1－P12)｜ψpχa〉

＋∑
a, b

〈ψpχaχb｜r－112 (1－P12)｜χaχbψq〉

＋∑
a, b

〈ψpχaχb｜r－123 (1－P23)｜χaχbψq〉. (30)

We also give the overlap and Hamiltonian matrix elements between Ψp and single, double,

and triple electron excited determinants of Ψp, Ψ r
q,a, Ψ rs

q,ab, and Ψ rst
q,abc. Here, Ψ rst…

q,abc… is any elec-

tron excited determinant in which electrons have been excited from χa, χb, χc, … to χr,

χs, χt,…. These matrix elements have non-vanishing terms.

The matrix elements between Ψp and Ψ r
q,a are as follows:

〈Ψp｜Ψ r
q,a〉＝－〈ψpχa｜χrψq〉, (31)

〈Ψp｜h＋(0)｜Ψ r
q,a〉＝－〈ψpχa｜h＋｜χrψq〉, (32)

〈Ψp｜Σ
i＝1

h(i)｜Ψ r
q,a 〉＝〈χa｜h｜χr〉[〈ψp｜ψq〉－∑

b

〈ψpχb｜χbψq〉]

－∑
b

〈χb｜h｜χb〉〈ψpχa｜χrψq〉

－〈ψpχa｜h(1)＋h(2)｜χrψq〉, (33)

〈Ψp｜Σ
i＝1

r－10i｜Ψ r
q,a 〉＝〈ψpχa｜r－102｜ψqχr〉－〈ψpχa｜r－101 ＋r－102｜χrψq〉

＋∑
b

〈ψpχbχa｜r－102 (1－P12)｜χbχrψq〉, (34)

and

〈Ψp｜Σ
i＜j

r－1ij ｜Ψ r
q,a 〉＝∑

b

〈χaχb｜r－112 (1－P12)｜χrχb〉[〈ψp｜ψq〉－∑
c

〈ψpχc｜χcψq〉]

＋∑
b, c

〈χaχb｜r－112 (1－P12)｜χcχb〉〈ψpχc｜χrψq〉

＋∑
b, c

〈χaχb｜r－112 (1－P12)｜χrχc〉〈ψpχc｜χbψq〉

＋〈ψpχa｜r－112 (1－P12)｜ψqχr〉
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＋∑
b

〈ψpχaχb｜r－112 (1－P12)｜χrχbψq〉

＋∑
b

〈ψpχaχb｜r－123 (1－P23)｜χrχbψq〉

－∑
b

〈ψpχaχb｜r－123 (1－P23)｜χbχrψq〉. (35)

The matrix elements between Ψp and Ψ rs
q,ab have non-vanishing terms except for the matrix

elements〈Ψp｜Ψ rs
q,ab〉and〈Ψp｜h＋(0)｜Ψ rs

q,ab〉.The resulting matrix elements are as follows:

〈Ψp｜Σ
i

h(i)｜Ψ rs
q,ab 〉＝〈χa｜h｜χs〉〈ψpχb｜χrψq〉－〈χa｜h｜χr〉〈ψpχb｜χsψq〉

＋〈χb｜h｜χr〉〈ψpχa｜χsψq〉－〈χb｜h｜χs〉〈ψpχa｜χrψq〉, (36)

〈Ψp｜Σ
i

r－10i｜Ψ rs
q,ab 〉 ＝〈ψpχaχb｜r－102 (1－P12)｜χrχsψq〉＋〈ψpχbχa｜r－102 (1－P12)｜χsχrψq〉,

(37)

and

〈Ψp｜Σ
i＜j

r－1ij ｜Ψ rs
q,ab 〉＝〈χaχb｜r－112 (1－P12)｜χrχs〉[〈ψp｜ψq〉－∑

c

〈ψpχc｜χcψq〉]

＋∑
c

〈χaχb｜r－112 (1－P12)｜χcχs〉〈ψpχc｜χrψq〉

＋∑
c

〈χaχb｜r－112 (1－P12)｜χrχc〉〈ψpχc｜χsψq〉

＋〈ψpχaχb｜r－112 (1－P12)｜χrχsψq〉

＋〈ψpχaχb｜r－123 (1－P23)｜χrχsψq〉

－〈ψpχaχb｜r－123 (1－P23)｜χsχrψq〉. (38)

Matrix elements between Ψp and Ψ rst
q,abc are nonzero only for electron-electron interaction,

and the formula is

〈Ψp｜Σ
i＜j

r－1ij ｜Ψ rst
q,abc 〉＝〈χaχb｜r－112 (1－P12)｜χsχr〉〈ψpχc｜χtψq〉

＋〈χaχb｜r－112 (1－P12)｜χtχs〉〈ψpχc｜χrψq〉

＋〈χaχb｜r－112 (1－P12)｜χrχt〉〈ψpχc｜χsψq〉. (39)

The matrix elements are complicated in form, and have up to four-electron integrals. It is

easy to calculate four-electron integrals over explicitly correlated Cartesian Gaussian func-

tions56.

IV. SUMMARY

We have extended Ore's PsH wave function so as to improve its flexibility. This was accom-
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plished by expansion of χH, χ'H, and ψPs using Gaussian functions. A set of equations to de-

termine these expansion coefficients variationally was derived. The extended Ore's PsH wave

function yielded a Ps binding energy of 0.117 eV and a two-photon annihilation rate of 2.157

ns－1. The values are improved by 0.049 eV and 0.302 ns－1. The rest of the effect of electron cor-

relation was also incorporated by using the effective potential proposed by Panas and Snis.

As a result, a Ps binding energy of 0.254 eV and a two-photon annihilation rate of 2.234 ns－1

were obtained.

We further applied the Ore-type wave function to many-electronic positronium-atom com-

plexes. The matrix elements over the determinantal many-electronic Ore-type wave func-

tions were derived with the help of diagrams. The resulting matrix elements have

complicated form, and include four-electron integrals. The four-electron integrals over ex-

plicitly correlated Cartesian Gaussian functions can easily be evaluated by the use of our

computational method. Further work for many-electronic complexes is in progress.
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