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Abstract
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Doctoral Degree of Computer Science

Real-Time 2D/3D Object Detection

and Pose Estimation

based on Template Matching

by Yoshinori KONISHI

2D/3D object detection and pose estimation is one of the essential techniques of

computer vision and is critical for various real applications such as factory automa-

tion (FA) and autonomous driving. The object detection and pose estimation is clas-

sified into broad two categories, one is general object (class) detection and pose es-

timation and another is specific object (instance) detection and pose estimation. The

target of this thesis is specific object detection and pose estimation which is mainly

used in FA applications such as visual inspections and robotic manipulations.

Three kinds of algorithms for specific object detection and pose estimation are

required to cover various applications. The first is 2D object detection and pose

estimation of planar objects on conveyors and tabletops. The pose of the object is

constrained by planes and the algorithm estimates 4 parameters (X/Y translations,

in-plane rotations and scales) from a monocular image. The second is 3D object

detection and pose estimation from a monocular image. This estimates rough 3D

position and pose (6 parameters - X/Y/Z translations and rotations) mainly for vi-

sualization in AR/MR applications where a small and fast monocular camera is pre-

ferred. The third is 3D object detection and pose estimation from 3D point clouds

captured by a 3D (range) sensor. This estimates precise 3D object position and pose

(6 parameters) mainly for robotic manipulations.
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The algorithms for specific object (instance) detection and pose estimation are

further categorized into three kinds of approaches, a global descriptor (template

matching) based approach, a local descriptor based approach and a learning based

approach. The global descriptor based approach can handle any kinds of objects and

is robust against background clutters, but it is fragile to occlusions and transforma-

tions. The local descriptor based approach is robust against occlusions and trans-

formations, but can only be applied to the objects where rich features (textures and

shapes) are extracted. The learning based approach is superior to the former two ap-

proaches in performance, but this requires large training dataset for each object and

scene. The target of this thesis is a research on the practical algorithms which can be

applied to real FA applications. In these applications, many of the target objects are

rigid, occluded objects are not inspected or grasped, and it is almost impossible for

customers to collect large dataset for each object and scene. For these reasons, the

global descriptor (template matching) based approach is employed in this thesis.

Proposed Algorithm 1: It has been shown that the template matching based

on discretized gradient orientations could handle texture-less objects. Though the

matching conditions based both on gradient positions and orientations are strict

and robust against background clutters, the similarity scores decrease largely even

when the appearance of target object is slightly changed. To tackle this problem,

we propose COF (Cumulative Orientation Feature) which is robust to appearance

changes induced by object pose changes and at the same time is enough discrimina-

tive to detect target objects against cluttered backgrounds. At first, many images are

generated based on 2D geometric transformations of a model image using random-

ized parameters for X/Y translations, rotation angles and scales. Then orientation

histograms are calculated at each pixel and pixel-wise dominant orientations are

extracted as features. Our proposed method was evaluated on publicly available

dataset and achieved higher detection rate and faster speed compared to state of the

art.

Proposed Algorithm 2: The 3D object detection and pose estimation based on the

template based approach tends to be slower when the number of templates amounts

to tens of thousands for handling a wider range of 3D object pose. To alleviate this
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problem, we propose a novel image feature and a tree-structured model. Our pro-

posed perspectively COF (PCOF) is developed from COF and extracted from ran-

domly generated 2D projection images from a 3D CAD, and the template based on

PCOF explicitly handle a certain range of 3D object pose. The hierarchical pose trees

(HPT) is built by clustering 3D object pose and reducing the resolutions of templates,

and HPT accelerates 6D pose estimation based on a coarse-to-fine strategy with an

image pyramid. In the experimental evaluation on our texture-less object dataset,

the combination of PCOF andHPT showed higher accuracy and faster speed in com-

parison with state-of-the-art techniques.

Proposed Algorithm 3: We propose PCOF-MOD (multimodal PCOF), balanced

pose tree (BPT) and optimum memory rearrangement for a coarse-to-fine search in

order to make the template based 3D object detection and pose estimation from a

RGB-D image faster. Firstly, PCOF-MOD is developed from PCOF by adding the

discretized orientations of surface normals. As with PCOF, the model templates of

PCOF-MOD explicitly handle a certain range of 3D object pose and the fewer num-

ber of templates can cover wider range of 3D object pose. Secondly, a large number

of templates are organized into a coarse-to-fine 3D pose tree (BPT) in order to acceler-

ate 6D pose estimation. Predefined polyhedra for viewpoint sampling are prepared

for each level of an image pyramid and 3D object pose trees are built so that the

number of child nodes of every parent node are almost equal in each pyramid level.

Lastly, two kinds of binary features at the lower pyramid levels are rearranged so

that nearby features are linearly aligned on a memory and these vectorized features

are processed at one time using SIMD instructions. In the experimental evaluation

of 6D object pose estimation on publicly available tabletop and our own bin pick-

ing dataset, our template based method showed higher accuracy and faster speed in

comparison with the existing techniques including recent CNN based methods.
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概要

画像や 3次元点群から物体の 2次元あるいは 3次元の位置と姿勢を認識する技術は，工

場自動化や自動運転など様々なアプリケーションで必要とされる画像認識の基本技術の

一つである．物体位置姿勢認識技術は大きく二つに分類することができ，一つは顔や人

体など物体クラスを対象とする一般物体位置姿勢認識，もう一つは特定の物体（インス

タンス）を対象とする特定物体位置姿勢認識である．本論文では工場での外観検査やロ

ボットによる把持・組立に用いられることが多い特定物体位置姿勢認識を対象とする．

特定物体位置姿勢認識はアプリケーションによって三種類のアルゴリズムが必要で

あると考えられる．一つ目はコンベアや机の上に置かれた平面的な物体の位置姿勢を認

識するアルゴリズムである．この場合の物体姿勢変化は平面上に限定されるため，単

眼カメラのみを用いて並進（XY成分）、回転、スケールの 4つのパラメータを推定す

る．二つ目はAR/MRなど 3次元表示を目的とした物体の概略 3次元位置姿勢を認識

するアルゴリズムである．この場合は処理速度や可搬性の観点から単眼カメラを用い，

並進（XYZ成分）、回転（XYZ成分）の 6つのパラメータを推定する．三つ目はロボッ

トによる把持・組立等を目的としたより高精細な 3次元位置姿勢を認識するアルゴリズ

ムである．高精度認識のため距離センサにより計測した 3次元点群を入力として用い，

3次元位置姿勢の 6つのパラメータを推定する．本論文ではこれら三つのアルゴリズム

に関し，テクスチャ無しや単純形状を含むあらゆる物体に適用可能で高速かつ外乱に

対してロバストな手法を提案する．

特定物体位置姿勢認識アルゴリズムは，大きく三つの手法に分類することができる．

一つ目はテンプレートマッチングに基づく手法，二つ目は局所特徴量に基づく手法，三

つ目は機械学習に基づく手法である．テンプレートマッチングに基づく手法は，あら

ゆる物体に適用可能で外乱に対してロバストであるが変形や隠れに弱い．局所特徴量

に基づく手法は，隠れや物体の変形に対してロバストであるがテクスチャや形状など

の特徴量が多く抽出できる物体にしか適用できない．機械学習に基づく手法は性能面

では前者二つの手法と比較して優位に立っているものの，対象となる物体や背景につ

いて多くの学習データを収集する必要がある．本論文では工場自動化やロボットビジョ

ンといった実アプリケーションに適した特定物体位置姿勢認識アルゴリズムの研究を

目的としている．こういったアプリケーションにおいては対象とする物体は幅広いがそ

の多くは剛体である，隠れている物体は検査や把持の対象とならない，物体や環境ご
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とに大量の学習データを収集することは現実的でないといった理由から，本論文では

テンプレートマッチングに基づく手法を採用した．

提案手法 1：テクスチャの少ない物体にも適用可能な 2次元物体位置姿勢認識手法

として，輝度勾配方向特徴量を用いたテンプレートマッチングが提案されてきた．し

かし勾配方向を照合条件として用いることで複雑背景下においても頑健な照合が可能

である一方，対象物体自身の見えがわずかに変化した場合には照合スコアが大きく低

下してしまうという課題があった．そこで本論文では，物体の姿勢変動による見えの

変化を考慮した累積勾配方向特徴量（COF: Cumulative Orientation Feature）を提案

する．提案手法ではまず，一定範囲内でランダムに発生させた平行移動，回転角度，ス

ケールパラメータを用い，1枚のモデル画像に対して幾何学的変換を適用して多数の画

像を生成する．次に各画像において算出した量子化勾配方向特徴量を用いて画素毎に勾

配方向ヒストグラムを作成し，頻度の大きい勾配方向のみを用いて特徴量を抽出した．

実際の画像に対して照合処理行い，提案手法が対象物体と背景を識別する性能を維持

したまま物体自身の見えの変動を許容できることを確認した．またテクスチャレス物

体の公開画像データセットを用いた 2次元物体位置姿勢認識の実験を行い，提案手法が

認識正確性及び処理速度において既存手法を上回ることを示した．

提案手法 2：単眼カメラ画像から 3次元物体位置姿勢を高速に認識する手法におい

ては，認識対象となる 3次元姿勢範囲が広い場合に照合に用いるテンプレートの数が

膨大になり処理速度が低下するという課題があった．この課題に対して本論文では，透

視投影に基づく累積勾配方向特徴量（PCOF: Perspectively COF）と階層的姿勢探索木

（HPT: Hierarchical Pose Tree）の二つの手法を提案する．PCOFは COFを拡張した

特徴量であり，対象物体の 3次元CADを様々な視点から見た 2次元投影画像を生成し

て特徴抽出を行う．このことにより，3次元姿勢変化による対象物体の見えの変化に対

する許容性と複雑背景に対する頑健性の両立を実現した．HPTは様々な視点において

作成された大量のテンプレートに対し，類似度に基づいたクラスタリングとテンプレー

トの低解像度化を繰り返すことで作成する．HPTを用いて画像ピラミッド上を探索す

ることにより，数万個の 3次元姿勢候補の中から最も類似度の高いテンプレートを高速

に絞り込むことが可能になる．9種類の金属部品を様々な方向から撮影したデータセッ

トを用いて評価実験を行い，PCOFとHPTを組み合わせた提案手法が 3次元物体位置

姿勢認識の高速性・正確性両面において既存手法を上回ることを確認した．

提案手法 3：距離画像やRGB-D画像から 3次元物体位置姿勢認識を行う場合におい

ても，単眼カメラからの認識と同様に照合に用いるテンプレートの数が多く処理速度が
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遅くなるという課題があった．この課題に対して本論文では，透視投影に基づく RGB-

D累積勾配方向特徴量（PCOF-MOD: Multimodal PCOF），平衡姿勢探索木（BPT:

Balanced Pose Tree），特徴量再配置による粗密探索高速化の三つの要素技術からなる

高速・ロバストな 3次元物体位置姿勢認識手法を提案する．一つ目の PCOF-MODは

PCOFにデプス画像特徴量を加えた特徴量であり，一定範囲内においてランダムに設

定した 3次元視点位置から対象物体の 3次元CADを見た場合のデプス画像を多数生成

し，それらからデプス勾配方向と表面法線方向について画素ごとに方向ヒストグラム

を作成し特徴抽出を行う．これにより，PCOF-MODは視点を設定した範囲内の 3次元

姿勢変化による見えの変化のみを照合時に許容可能な特徴量となる．二つ目の要素技

術である BPTは，画像ピラミッドの階層ごとに頂点数の異なる多面体の頂点を視点位

置として使用することで，画像内 2次元位置の粗密探索と 3次元姿勢の粗密探索を同

時に実施可能とした探索木である．全ての探索木の深さは等しく，親ノードに連結する

子ノードの数もほぼ均一であるため探索効率が高いという特徴を備えている．三つ目

の特徴量再配置は，画像ピラミッドの最上位階層以外では一つ上の階層で検出された

正解候補周辺の画素においてのみ特徴量照合を行うという粗密探索の特性を活用して

いる．即ち，照合対象となる周辺画素の特徴量がメモリ上で連続するように再配置し

た特徴量マップを作成し，連続データに適用可能なCPU命令（SIMD命令）を用いて

一括照合を行うことで粗密探索の高速化を実現する．これら三つの要素技術を組み合

わせた 3次元物体位置姿勢認識手法について公開 RGB-Dデータセットと我々が構築し

たバラ積み部品データセットにおいて性能評価を行い，提案手法が 3次元物体位置姿勢

認識の高速性・正確性両面において近年のCNNベース手法を含む既存手法を上回るこ

とを示した．
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Chapter 1

Introduction

1.1 Background

Detecting object position and pose is one of the essential techniques in image pro-

cessing or computer vision and is widely used in various applications. For exam-

ple, face detection for digital equipments, pedestrian detection for video surveil-

lance, vehicle/obstacle detection for autonomous driving, and detection of mechani-

cal/electronic parts for roboticmanipulation (Figure 1.1). Due to these broad-ranging

applications, the research on this topic has been extensively conducted over many

years.

There are two kinds of researches on object detection and pose estimation. One is

detection of generic object or object class, and another is detection of specific object

or instance. Face detection [1, 2] and pedestrian detection [3, 4] belong to generic

object detection. In recent years, CNN based methods such as Faster R-CNN [5],

Figure 1.1 Typical applications of object detection: robot picking for packaging (left)
and pedestrian detection for vehicle safety (right).
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SSD [6] and YOLO [7] have achieved remarkable performances on generic object de-

tection. On the other hand, the researches on specific object detection have also

been extensively conducted for many years in the context of image retrieval [8],

augmented reality (AR) [9], robotic grasping [10] and so on. Especially in the ap-

plications including physical interactions with real world such as AR and robotic

grasping, estimation of object pose as well as object position is crucial.

This thesis pursue research on object detection and pose estimation of specific

object or instance. Object detection and pose estimation are further divided into 2D

and 3D. In 2D object detection and pose estimation, four parameters of X/Y posi-

tions, a rotation angle and a size in an image coordinate system should be detected

from an input image. For example in common applications of factory automation,

mechanical/electronic parts and products on a conveyor belt are picked by robots

or visually inspected by cameras. In such cases, the degree of freedom for the target

objects is three (X/Y translations and rotation) and these parameters are detected

using 2D object detection and pose estimation algorithm. The reference model for

2D object detection and pose estimation usually made from a captured image or 2D

CAD of the target object.

On the other hand, six parameters of X/Y/Z positions and rotation angles should

be detected when the pose of objects are not constrained. The robotic grasping and

AR applications usually require 3D position and pose of target objects. 3D object po-

sition and pose (6 degrees of freedom pose) can be recovered from a single monocu-

lar camera and from a 3D sensor or a RGB-D sensor, and the reference model for 6-

DoF pose estimation is usually made from 3D CAD or real data captured from mul-

tiple viewpoints. The terms 3D sensor and RGB-D sensor here include various mea-

surement principles such as passive/active stereo, 3D laser scanning, phase shift-

ing and time-of-flight. Although the precision and robustness of detected position

and pose are improved by using depth information from 3D sensors, they are usu-

ally bigger, heavier, slower andmore expensive than monocular cameras. Moreover,

they aremore sensitive to illumination conditions and object materials/surfaces, and

require cumbersome 3D calibrations. For those reasons, a single monocular camera

and a 3D sensor for 3D object detection and pose estimation are used in their appro-

priate situations or applications. More concretely, a single monocular camera is used
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for detecting rough 3D position and pose of isolated objects in grasping by consumer

robots and AR applications. A 3D sensor is often used for detecting precise 3D po-

sition and pose under cluttered conditions in grasping and assembling by industrial

robots.

To summarize, three algorithms are required for specific object detection and

pose estimation.

• 2D object detection and pose estimation using a monocular camera which is

suitable for detecting objects whose pose is constrained by a plane such as a

conveyor belt in a factory.

• 3D object detection and pose estimation using a monocular camera which is

suitable for detecting rough pose of isolated objects.

• 3D object detection and pose estimation using a 3D sensor which is suitable for

detecting precise pose under cluttered conditions.

In this thesis, these three algorithms are researched and our proposed algorithms

are evaluated. Although our proposed algorithms are not designed for a specific ap-

plication, we often assume the algorithms are used in the applications for factory au-

tomation (FA) including robotic applications because the current market of machine

vision for FA is huge (approximately 20 billion in USD) and will keep on expanding

in future.

1.2 Problem Statement

In real applications of specific object detection and pose estimation, the algorithm

should handle various target objects those are seen in various scenes such as home,

office and factory. Additionally, the algorithm should work under various condi-

tions and the time for detection is important for the usability and productivity of

the applications. Therefore, the requirements for the algorithm are three-fold: target

variation, robustness and detection speed.
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Figure 1.2 Various target objects in factory scenes such as textured/texture-less,
simple-/complex-shaped, shiny/matte/translucent/transparent surface.

Target Variation

It is desirable that a single algorithm handles as many objects as possible. As an

example of real applications, the possible target objects in factory automation are

shown in Figure 1.2. These packages, foods and mechanical/electronic parts are

grasped/assembled/inspected by robots and cameras.

The factors which influence the performance of pose estimation algorithm are

texture on surface, shape, material and size of the objects. Regarding the texture on

surface, there are rich-textured objects such as the packaged food, tube and bottle

where rich image features are extracted. Contrastingly, many of the objects in FA

applications has little texture such as the connector, bearing and screw where the

object contours are only clues for object pose estimation.
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Similar to textures on object surfaces, rich 2D/3D features are extracted from

the complex-shaped objects such as the connector and gear, and poor features are

extracted from the simple-shaped objects such as the bearing and capacitor. Regard-

ing object materials, metallic, translucent and transparent objects are difficult for the

algorithm to detect. The appearance of these objects heavily depends on lighting

conditions due to the light reflection and absorption around the object surface. This

phenomena also make it hard for 3D sensors to measure the distance to the surfaces.

For these reasons, 2D/3D features of these materials are unstable and fragile to illu-

mination conditions.

Lastly, small-sized objects like the capacitor are also difficult for object detection

algorithms simply because the extracted features are too few to discriminate target

objects from backgrounds and recognize subtle differences between objects of differ-

ent classes or pose.

These factors on target variations are combined and influence on each other. Ad-

ditionally, illumination conditions and background clutters complicate these factors

and degrade the performance of pose estimation algorithms.

Robustness

Partial occlusions, illumination conditions and background clutters usually pose

problems to specific object detection and pose estimation. However in FA appli-

cations, partial occlusion is not much of a problem for object detection because oc-

cluded objects are difficult to be grasped and inspected. The occluded objects are

ignored or resolved by other devices. Contrastingly, the robustness against illumi-

nation conditions and background clutters is crucially important for FA applications

because many of the target objects are small, texture-less, simple-shaped and metal-

lic. Only poor 2D/3D features are extracted on small/texture-less/simple-shaped

objects and this degrades the performance under background clutters due to many

false positives on the background (top left of Figure 1.3). The reflection light on

metallic objects often creates false edges and textures, and this induce false positives

inside the object area (top right of Figure 1.3).

The robustness against the changes in appearance and shape from referencemod-

els is also important. Although many of the target objects in FA applications are
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Figure 1.3 Example images of disturbances to specific object detection. 1st row: Small
connectors on newspaper (cluttered background) and the reflection on
metallic surface. 2nd row: Perspective distortion and the 3D measurement
errors on a translucent tube.

rigid, the difference between reference model and the input image or 3D point cloud

occur by various factors. For example, each part and product is slightly different

in its shape from CAD by poor machining accuracy, the appearance is perspectively

distorted (bottom left of Figure 1.3), and the measured 3D point clouds contain noise

and errors (bottom right of Figure 1.3). The algorithm should detect target objects

ignoring these differences and errors.

Detection Speed

Detection speed determines the productivity of factory lines and the faster is bet-

ter. Although GPUs are getting faster and cheaper in recent years, the GPUs which

meet the requirements of FA applications such as durability for 24/7 running and
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long-period supply have not been available yet. Moreover, embedded systems are

preferred for the usability and compact size of machine vision products. Thus the

algorithm should run fast even on low-end CPUs using high-resolution cameras un-

der background clutters.

Not only the time for detection but also the time for training is important for

real applications of specific object detection. The training of classifiers for generic

object detection is executed offline using huge training samples because the object

classes to be detected in the applications are determined beforehand. However, the

target objects in the applications of specific object detection such as FA applications

are different in every factory line. Therefore, it is difficult for engineers to train all

models beforehand and the model for each application should be trained on-site. It

is preferred in real applications that the model is trained only from a captured image

or CAD of the target object and the training takes a few minutes at the longest.

1.3 Contribution of the Thesis

This thesis presents fast and robust 2D/3D detection and pose estimation of spe-

cific objects or instances mainly for factory automations including robotic applica-

tions. Three algorithms are proposed to handle various situations: 2D detection and

pose estimation from a monocular image, 3D detection and pose estimation from

a monocular image and 3D detection and pose estimation from a RGB-D image.

Though these three algorithms are designed for different purposes and scenes, all of

these are based on some common technical components. Fist of all, our proposed

algorithms are all based on template matching which has many advantages in real

applications of FA and robotics over other methods like local descriptor and ma-

chine learning (the details will be discussed in Chapter 2). Moreover, our algorithms

consist of three common technical components. First, 2D/3D binary features which

are fast to compute similarity scores, and robust against background clutters, light-

ing conditions and small 2D/3D pose changes. Second, tree-based data structures

for model templates which are efficient for search in 2D/3D position and pose space,

and costs small memory footprint. Third, a memory rearrangement algorithmwhich

makes a coarse-to-fine search faster using SIMD instructions.
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Due to our template matching based approach with fast and robust features, our

algorithms can handle wider ranges of objects such as textured, texture-less, simple-

shaped, complex-shaped, shiny, matte objects. They also are robust against back-

ground clutters, illumination changes and small changes of object pose. Though

template based approaches tend to be slower due to the large numbers of model

templates to be matched, our tree-structured model and memory rearrangement

make them faster and realize real-time processing. Additionally, 2D/3D models are

trained only from a image or 3D CAD and the training takes less than a fewminutes.

These enable users to train the models of their target objects on-site.

Typical detection results of our proposed three algorithms are shown in Figure

1.4. 1st row shows the input and result image of our 2D detection and pose esti-

mation algorithm. The multiple texture-less objects (air nozzle) are detected under

background clutters. 2nd row shows the input and result image of our 3D detec-

tion and pose estimation algorithm from a monocular image. The texture-less and

shiny object (side clamp) is detected under background clutters and partial occlu-

sion. 3rd row shows the input depth and grayscale image where the result of our

3D detection and pose estimation from a RGB-D image is rendered on. The multi-

ple translucent tubes whose measured 3D point cloud are partially incomplete are

detected correctly.

The key contributions of this thesis are as follows:

• 2D/3D fast and robust featureswhich tolerate only the small changes in 2D/3D

object pose without degrading the robustness against background clutters.

First, the feature is introduced in 2D object detection and pose estimation. The

2D feature is based on the discretized orientation of image gradients and is

robust to the appearance changes by object pose changes (X/Y translation, in-

plane rotation and object scale). This feature is developed to handle object pose

changes in X/Y/Z translation and rotation for 3D object detection and pose es-

timation from amonocular image. Then it is applied to 3D object detection and

pose estimation from a RGB-D image by adding the discretized orientations of

surface normals as a 3D feature.

• Tree-based data structures which enable efficient search both in position and
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Figure 1.4 Example images of the detection results by our proposed three algorithms.
Object edges and bounding boxes/3D coordinate axes are drawn based on
the detected pose on the right panel. 1st row: Air nozzles are detected
under background clutters by our 2D object detection and pose estimation
algorithm from a monocular image. 2nd row: The shiny mechanical part
is detected by our 3D object detection and pose estimation algorithm from
a monocular image. 3rd row: The translucent tubes where the measured
point clouds are deficient are detected by our 3D object detection and pose
estimation algorithm from a RGB-D image.
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pose are proposed. The data structure is firstly introduced in 3D detection and

pose estimation from a monocular image in order to boost the detection speed

using large numbers of templates. It is based on the combination of a coarse-

to-fine search with an image pyramid for efficient search in an image space and

pose clustering for efficient search in 3D pose space. This is optimally modified

for 3D detection and pose estimation from a RGB-D image where 3D feature

can be extracted and is more discriminative than 2D feature for recognizing 3D

pose. Though these data structures are not applied to 2D object detection and

pose estimation in this thesis, they are also effective for fast 2D object detection.

• Optimum memory rearrangement is introduced in order to make a coarse-to-

fine search faster in 3D detection and pose estimation from a RGB-D image.

The feature map which is optimized for template matching using SIMD in-

structions is created so that two types of features of neighboring pixels (e.g. 4

by 4) are linearly aligned. Though this technique can be applied to any detec-

tion algorithms which utilize a coarse-to-fine search with an image pyramid,

this is most effective in 3D object detection from a RGB-D image because large

numbers of templates for two types of features should be scanned within a

image.

• Complete pipelines for three types of specific object detection including pose

refinement are implemented. They are evaluated on publicly open dataset and

our own dataset which resembles realistic FA and robotic scenes. Our pro-

posed algorithm and the whole pipelines are thoroughly compared with exist-

ing methods, and our (dis-)advantage over them and the remaining problems

are discussed.

Though our proposed algorithms are evaluated and compared with the exist-

ing work mainly on FA and robotic scenes or dataset, the algorithms are also useful

and effective for other applications such as augmented reality and medical imag-

ing systems due to their preciseness, fast speed and robustness against background

clutters and illumination changes. Our three main technical components: the fast
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and pose-robust features, the tree-structured models and the optimum memory re-

arrangement for a coarse-to-fine search can be independently used and effective for

various applications.

1.4 Outline of the Thesis

The remaining of this thesis is organized as follows: Chapter 2 summarizes current

state-of-the-art techniques for 2D/3D object detection and pose estimation of specific

objects. The researches on 3D object detection and pose estimation include both of

those from a monocular image and a RGB-D image. The existing research on these

topics are surveyed and categorized into some groups. The pros and cons of these

groups are listed and compared. After determining one groupwhich is most suitable

for FA applications, the main limitations are identified.

Chapter 3 describes our proposed algorithm of 2D object detection and pose es-

timation. In addition to the main idea on 2D image feature which is robust against

the changes in object pose, whole object detection pipeline including pose refine-

ment is implemented. The robustness of our proposed image features is compared

with existing orientation features. The accuracy and speed of our object detection

pipeline are evaluated on two public dataset and compared with existing methods.

The estimation errors are also evaluated on our own dataset.

Chapter 4 presents our proposed algorithm of 3D object detection and pose es-

timation from a monocular image. The 2D image feature proposed in Chapter 3 is

modified to be robust against the changes in 3D object pose. The robustness of the

proposed feature is evaluated and compared with existing orientation features. Ad-

ditionally, the tree-structured model which enables the search both in 2D image and

3D pose space faster simultaneously is proposed. Our 3D object detection and pose

estimation algorithm consists of the image feature and data structure. Our detection

pipeline including pose refinement based on 2D edges is evaluated and compared

with existing methods on our own dataset for FA applications.

Chapter 5 explains our proposed algorithm of 3D object detection and pose esti-

mation from a RGB-D image. The 2D image feature proposed in Chapter 4 is further

modified to handle RGB-D images by adding the orientations of surface normals as
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3D features. The tree-based data structure in Chapter 4 is also modified so that the

searching is more efficient by building the balanced trees. Moreover, the memory

rearrangement algorithm for faster coarse-to-fine search is introduced. The whole

pipeline includes these three components and ICP-based 3D pose refinement. Our

pipeline is evaluated on two public dataset for tabletop scene and on our own built

dataset for bin-picking scene.

Chapter 6 summarizes and gives a conclusion of the thesis. Furthermore, an

outlook on future work is provided.
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Chapter 2

Related Work and State of the Art

This chapter presents existing work on 2D/3D object detection and pose estimation

of specific object instances. The researches have been often divided into two groups,

global- and local-descriptor based methods. In recent years, many learning-based

approaches have been proposed for specific object detection. Though the learning-

based methods include both global- and local- descriptor based methods, we cate-

gorize these researches into new third group because they have different properties

from other two groups and often show improved performance. After the details of

each group is described and surveyed, we discuss pros and cons of these approaches

and the suitabilities for real applications in factory scenes.

2.1 Global Descriptor Based Approach

The global descriptor based method uses a target object as a whole for detection and

pose estimation. The descriptor is compared with the segmented region or scanned

in an image, and the position and pose are detected. This approach is also known as

template matching or pattern matching and has been intensely studied since the be-

ginning of image processing research. The research started with 2D object detection

and pose estimation from a monocular image in 1960s. The research on 3D object

detection and pose estimation from a monocular image appeared in 1980s and then

the research using a depth image appeared in 1990s. These researches are surveyed

in the following two subsections, one is on 2D detection and pose estimation and

another is on 3D detection and pose estimation.
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2.1.1 2D Object Detection and Pose Estimation

The most basic image feature is a brightness value at each pixel and the vector of

brightness values is compared between a model image and an input image based

on similarity measures such as normalized cross correlation (NCC), sum of abso-

lute difference (SAD) and sum of squared difference (SSD). To localize the position

and pose of a target object, many templates of various sizes and rotation angles are

exhaustively scanned in an input image (full search). Many full search equivalent

algorithms were proposed to speed up this detection process and these are well sur-

veyed in [11]. Moreover, many approximating full search algorithms have also been

proposed to make detection faster, and some of them were based on hierarchical im-

age pyramids [12], simple window testing [13], hash tables [14] and nearest neighbor

search [15].

The brightness value of each pixel is heavily influenced by illumination condi-

tions and the performance of object detection degrades when the brightness patterns

on object surfaces are changed due to shadows and reflections. The edge based im-

age features were proposed to improve the robustness against illumination changes.

The edges which represent only the shapes and textures of the target object are ex-

tracted from amodel image and comparedwith the edges from an input image using

the similarity measures like Chamfer distance [16, 17] and Hausdorff distance [18,

19]. Moreover, the similarity measures which use not only the positions of edges but

also the directions of their normal vectors were proposed in order to make template

matching robust against background clutters [20, 21]. The edges are extracted using

edge detection algorithms such as Canny [22] and LSD [23], and their speed and

repeatability also influence the performance of object detection.

The direction of image gradient has also been proposed as the image feature

which is robust against occlusion, clutter and illumination [24]. The calculation of

image gradients based on derivative filters like Sobel and Prewitt is faster and the

result is more stable compared to the edge extraction algorithms. Ullah et al. have

discretized the direction of image gradients into eight orientations and showed that

template matching based on it is also robust against background clutters and illu-

mination changes [25]. Hinterstoisser et al. [26] have proposed DOT (Dominant
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Orientation Template) where only the dominant orientations within a certain range

of pixel grid were discretized and represented as a binary digit number. It has been

shown that DOT was fast to compute the similarity score using logical operations

and was robust against small deformations and object pose changes due to the grid-

based feature extraction.

The robustness to partial occlusions and object transformations are also critical

problems for object detection. The occlusion aware algorithms which were based

on occlusion reasoning [27] and RANSAC based hashing [28] have been presented

to handle partial occlusions. Though the transformation or deformation invariant

template matching e.g. rotation [29], affine transformation [30] and non-rigid defor-

mations [31, 32, 33] have been proposed, these algorithms are not appropriate for

the application where the precise object pose is required.

The detection results of the global descriptor based method are shown in Figure

2.1. Our 2D detection and pose estimation algorithm which uses quantized gradi-

ent orientations (introduced in Chapter 3) was used for detection. The method can

handle textured (1st row) and texture-less objects (2nd row) even on a cluttered back-

ground (3rd row). However, the similarity scores become lower when the object is

occluded (4th row) and perspectively distorted (5th row).

2.1.2 3D Object Detection and Pose Estimation

The research on global descriptor based approach for 3D object detection and pose

estimation has started with monocular image in 1980s. The appearance of a target

object from various viewpoints were represented as aspect graph [34], interpreta-

tion tree [35], relational graph [36] and aspect tree [37]. The model templates are

searched and found in an input image, then 3D position and pose are retrieved from

the viewpoint where the model template is made. The matching between models

and inputs was done based on line features [38], edges and silhouettes [39], and

shock graphs and curves [40]. The search space of 3D object detection and pose

estimation is huge (6-DoF) and many algorithms which reduced the search space

have been proposed, for example, template matching on the 3D pose manifold [41,

42] and pose estimation of the objects on a conveyor belt [43]. Moreover, the ad-

ditional equipment and pre-/post-processing algorithms such as multi-flash camera
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Figure 2.1 Detection results of our global descriptor based method presented in Chap-
ter 3. Top row: A textured package on a simple background. 2nd row: A
texture-less pipe on a simple background. 3rd row: A texture-less connec-
tor on a cluttered background. 4th row: An occluded package. 5th row: A
textured package with perspective distortion. The left images are models
and the right images are the detection results where the bounding boxes
and extracted edge from the models are drawn. The yellow dots represent
the feature points whose correspondences are not found in the input im-
ages.
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for eliminating the false edges due to reflections and shadows [10], matching of hier-

archically segmented contours (gPb) [44, 45] and two-level hypothesis verifications

[46] have been introduced.

Full search among 6-DoF pose space only from a monocular image is prone to

fail and take long time because the number of model templates for covering full 3D

object pose is large and the edge/line features extracted from images are fragile to

background clutters. Ulrich et al. [47] proposed pose clustering based on similarity

scores between neighboring viewpoints and template matching based on normal-

ized gradient vectors. It was shown that their proposed method was fast enough

for covering full 3D object pose and robust against background clutters. Hinter-

stoisser et al. [48] also presented that their LINE2D algorithm which was based

on fast matching of binarized orientation features using vectorized memory map

achieved fast and robust 6-DoF pose estimation.

Adding depth information makes 3D object detection and pose estimation more

robust against background clutters. Various global descriptors based on 3D shapes

of objects have been proposed, for example, surface signatures [49], shape distribu-

tions [50], cone curvature [51] and depth gradient images [52]. These descriptors

represent the 3D curvatures of object surfaces or relationships between points on

surfaces, and the computation is rather complex and takes long time. For robotic ap-

plications, more simple and faster, but viewpoint dependent descriptors have been

proposed, such as viewpoint feature histogram (VFH) [53] and HOG over depth im-

age [54]. In order for more robust and efficient 3D object detection and pose estima-

tion, VFH was extracted only on clustered stable regions (CVFH) [55], CVFH was

computed in unique reference frames (OUR-CVFH) [56], and VFH was combined

with a 2D gradient based detector [57].

Hinterstoisser et al. [58, 48, 59] have proposed LINEMODwhere discretized sur-

face normals were added to LINE-2D and showed that LINEMOD was more robust

against cluttered background and faster than the existing methods. LINEMOD has

been extended using hashing [60, 61], matching of GPU-optimized feature vectors

for scalability to increasing kinds of objects [62], and compensation for bias of multi-

modal features for handling simple-shaped objects [63].



18 Chapter 2. Related Work and State of the Art

2.2 Local Descriptor Based Approach

The local descriptor based object detection is mainly divided into two components,

first is keypoint detection and second is descriptor matching. The keypoint is a dis-

tinctive point or area in an image, for example, edges, corners and blobs. The local

descriptor represents the local image patches or object surfaces around the keypoint,

and the similarity of the descriptor is measured between a reference model and an

input image. The position and pose are usually recovered from multiple matching

results of local descriptors based on pose clustering or Hough voting. For estimation

of 3D object pose, it can be recovered by solving PnP problem based on 2D-3D cor-

respondences those are extracted from local descriptor matching [64]. The research

on keypoint detection and local descriptor matching have been done from 1980s and

their application to object detection and pose estimation has started from late 1990s.

These researches are surveyed in the following two subsections, Subsection 2.2.1 for

2D object detection and pose estimation and Subsection 2.2.2 for 3D object detection

and pose estimation.

2.2.1 2D Object Detection and Pose Estimation

The research on local descriptor based object detection has been rapidly become

popular since the successful and impressive result of SIFT [65]. The local descrip-

tor based method is robust to partial occlusions and deformation due to its locality.

Additionally, it is scalable to higher resolution of images and increasing number of

object class because the features are extracted only from the interested regions. Then,

many successor of SIFT those were faster, more robust and compact like SURF [66]

and ORB [67] have been proposed. Various keypoint detectors and local descriptors

have been well evaluated and summarized in the survey paper[68, 69, 70].

Many of the local descriptors extract brightness patterns or gradient histograms

from local regions. This requires rich textures on every local surfaces of target ob-

jects and cannot be applied to texture-less objects. To handle texture-less objects,

the local descriptors based on edge orientation histograms [71] and line features [72]

were proposed. However, these simple features were less discriminative and fragile

to cluttered background. A pair of line segments was used to make the matching
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of edge based local descriptor more robust to background clutters [73, 74]. Fur-

thermore, the aggregation of line segments into oriented rectangles [75] and multi-

layered binary nets [76] were proposed for more robust and faster matching. These

extension of local descriptor to texture-less objects often use line segments as their

feature description, and the repeatability and speed of the line segment detector

heavily influence on the performance of object detection and pose estimation.

The voting based methods such as generalized Hough transform [77] and ge-

ometric hashing [78] are often classified into the local descriptor based approach.

However, object detection based on voting from densely sampled features like edges

and lines is rather similar to global descriptor (template matching) based approaches

because the model features for voting is extracted fromwhole object area. Therefore,

the voting based approaches are applicable to texture-less objects and robust against

background clutters, but fragile to partial occlusions and deformations.

The detection results of the local descriptor based method (SIFT [65] was used)

are shown in Figure 2.2. The test images are same as in Figure 2.1. The number

of detected keypoints and matched descriptors on texture-less objects (2nd and 3rd

rows) are much fewer than that on the textured object (1st row). This implies that

the local descriptor based object detection tends to fail on texture-less and small

objects. The 3rd row shows that there are many false correspondences due to the

background clutters and this makes it difficult for the local descriptor based method

to handle cluttered backgrounds. On the other hand, there are sufficient number

of correct correspondences on the occluded (4th row) and perspectively distorted

object (5th row). This is because the local areas are not so changed compared to the

whole object.

2.2.2 3D Object Detection and Pose Estimation

The keypoint detectors and local descriptors have been applied to 3D object detec-

tion and pose estimation. Collet et al. [79] have proposed 3D pose estimation based

on the combination of RANSAC and mean shift from the matched SIFT descriptors.

They also proposed optimized framework for object pose estimation where robust

performance with iterative feature clustering and partition was achieved [80]. Wag-

ner et al. [81] have presented fast 6-DoF pose detection and tracking on mobile
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Figure 2.2 Detection results of local descriptor based method (SIFT [65] was used). 1st
row: A textured package on a simple background. 2nd row: A texture-
less pipe on a simple background. 3rd row: A texture-less connector on
a cluttered background. 4th row: An occluded package. 5th row: A tex-
tured package with perspective distortion. The left images are models and
the right images are the detection results where the circles represent the
detected keypoints and matched keypoints are connected by straight lines.
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devices based on FAST corner detectors and SIFT/Ferns descriptors. Hinterstoisser

et al. [82] have proposed the keypoint detection based on the pairs of Harris corner

points and 3D pose estimation based on the geometric and photometric consisten-

cies of the point pairs. It has been shown that these approaches worked well only on

rich textured objects with high resolutions.

Similar to 2D object detection and pose estimation (Subsection 2.2.1), the edge

and line features are required for handling texture-less objects. Various approaches

have been proposed based on the correspondence of line features [72], Chamfer

matching of the edge template [83], and tracing paths of edgelet constellations [84].

However, edges and lines are too simple to discriminate those of objects from those

of background and it have been shown that these approaches were effective for

texture-less objects with high resolutions at simple backgrounds.

Using depth information is of course helpful for more robust and accurate 3D

object detection and pose estimation like in global descriptor based approaches.

Various 3D local descriptors have been proposed from 1990s and they were well

surveyed and experimentally evaluated in [85, 86, 87]. Spin image [88] which de-

scribes the spatial distributions of neighboring points is the first successful 3D local

descriptor. It has been often cited and applied to many applications. Afterwards

FPFH [89] and SHOT [90] which describes the geometric attributes of the surfaces

around keypoints using histograms have been introduced and they showed superior

performance.

Many pose hypothesis are generated by matching of local descriptors and verifi-

cation methods of these pose hypothesis have been proposed. Zach et al. [91] have

introduced early rejection of outliers using dynamic programming. Aldoma et al.

[92] have proposed the framework for verification of pose hypotheses based both on

global and local descriptors. Buch et al. [93] have presented the voting in a 1-DoF

rotational subgroup and achieved efficient and robust pose estimation.

The point pair feature (PPF) [94] is a most successful and well known 3D local

descriptor ever and it has often been extended and modified since the original al-

gorithm was published in 2010. For example, using visibility context for robustness

against background clutters [95], selecting points and making the pair of bound-

ary to boundary (B2B), surface to boundary (S2B), line to line (L2L) [96], adding a
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color component (CPPF) [97], using the points on geometric edges [98], calculating

PPF on segmented point clouds [99] and modified point sampling and voting [100]

have been proposed. The performance evaluation of PPF and its variants has been

detailed in [101]. In PPF, 3D pose and positions are voted from dense point pair fea-

tures. Therefore, the features of PPF is more similar to the global descriptor based

approaches than the local descriptor based approaches, which is described in Sub-

section 2.2.1.

2.3 Learning Based Approach

Machine learning algorithms such as SVM and boosting havewidely been applied to

generic object detection and pose estimation in order to handle intra-class variabil-

ity. On the other hand, they have rarely used for specific object detection and pose

estimation because there was only one positive example for the learning. Though

Malisiewicz et al. [102] have proposed exemplar-SVMs where a single positive in-

stance and millions of negatives were trained, they applied the ensemble of them

to general object detection. This trend has changed since the breakthrough of CNN

on the task of general object recognition on ImageNet [103]. Then the deep learn-

ing algorithms has begun to be applied to feature/descriptor design (Subsection

2.3.1) and pose classification (Subsection 2.3.2) for specific object detection and pose

estimation. The learning of general purpose descriptors and object pose manifold

requires only positive samples and the classifier learning for detection requires both

positive and negative samples.

2.3.1 Learning of Feature and Descriptor

The deep learning methods have been applied to local descriptor matching such as

comparison of image patches [104], designing discriminative image patches [105],

and end-to-end learning of whole pipeline [106]. However, Balntas et al. [70] have

shown that the tuned hand-crafted descriptors achieved almost the same perfor-

mance as deep learning based descriptors on their new large dataset. They have

also been utilized to extract discriminative and compact 3D local descriptors [107,
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108]. The end-to-end framework for joint learning of keypoint detector and descrip-

tor [109], and learned descriptors based on point pair feature [110, 111] have also

been proposed. Though these local descriptors were learned based on large dataset,

it was unclear whether they work on totally different scenes.

The learning methods for object specific feature extraction have been presented.

For example, the learned voting weights for point pair feature [112], the discrimi-

native features for 3D object pose and class learned by CNN [113], and the learning

of 3D object pose differences by CNN [114] were proposed. The manifold learning

of 3D object pose by dimensionality reduction has also been proposed, for example,

learning of RGB-D patches using convolutional auto encoder [115] and learning of

appearance of whole object in RGB image using a self-supervised augmented auto

encoder [116]. Pavlakos et al. [117] have proposed the object specific keypoint de-

tector learned by CNN and it was used in their pipeline for 6-DoF pose estimation.

2.3.2 Learning of Object Class and Pose

The learning based pose classification has been often used for 3D object detection

and pose estimation because 3D pose space was too large for exhaustive search.

Rodorigues et al. [118] have proposed 6-DoF pose voting based on random ferns

from RGB patches generated by their multi light imaging system. Tejani et al. [119]

have proposed 6-DoF pose estimation from RGB-D patches using Hough forest and

inference of latent class distribution. To make pose estimation robust against back-

ground clutters, some researches use background class for their training. Rios-Cabrera

et al. [120] used the coefficients learned by linear SVM for feature selection and

matching weights. Brachmann et al. [121] have learned 126 classes (discretized 125

pose plus background) by random forest and estimated 6-DoF pose based on coor-

dinate regression. Later, this method has been improved by exploiting label uncer-

tainty [122]. Kehl et al. [123] have combined SSD-like CNN architecture for general

object detection with 6-DoF pose estimation. They estimated simultaneously 2D po-

sition of object bounding box, object class, viewpoint and 2D rotation angle using

multi-class detector. Xiang et al. [124] have proposed the quaternion regression

based on two kinds of loss functions for handling symmetric objects.
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In recent years, it has become popular that 6-DoF object pose was recovered from

the detection results of the projected 2D corner points of 3D bounding boxes. This

method estimates 6-DoF pose based on 2D-3D correspondences only from a RGB

image and the pose is refined using depth information if it is available. Crivellaro

et al. [125] have trained CNN to detect parts of objects based on the projected 3D

control points. Rad et al. [126] have estimated the projected corner points of bound-

ing boxes using the appearance of a whole object. Tekin et al. [127] have proposed

similar but faster method based on YOLO-like CNN architecture.

The learning based approach has also been employed for 6-DoF pose refinement

and hypothesis verification. Krull et al. [128] have proposed the pose hypothesis

verification by analysis by synthesis and learned CNN for the comparison between

rendered and observed images. Michel et al. [129] have presented the globally op-

timum hypothesis generation based on fully-connected conditional random field.

Regarding 6-DoF pose refinement, the gradient based optimization using reinforce-

ment learning [130] and the prediction of relative pose transformation from the dif-

ference between the rendered image and the observed image [131] have been pro-

posed.

2.4 Suitability for Real Applications

In previous sections, three kinds of approaches for 2D/3D specific object detection

and pose estimation are surveyed. The pros and cons of these approaches are sum-

marized in Table 2.1. The global descriptor based approach can handle any kinds of

objects and robust against background clutters as shown in Figure 2.1. However, the

feature points are extracted from whole object and their correspondence should be

found. Then the global method is fragile to occlusions and transformations (see 4th

and 5th row in Figure 2.1). Additionally, the processing time for exhaustive search

of model templates increases linearly with the number of kinds of objects and image

resolutions.

Contrastingly, the local descriptor based approach is robust against occlusions

and transformations because the matching of each descriptor is done independently

and the descriptor represents a part of object. Moreover, the local descriptors are
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Table 2.1 The pros and cons of global descriptor based, local descriptor based and
learning based approaches for specific object detection and pose estimation.

global local learning

texture-less and simple-shaped ✓ ✓
background clutter ✓ ✓
small size ✓ ✓
occlusion ✓ ✓
deformation ✓ ✓
scalability ✓ ✓
immediate training ✓ ✓

extracted only on the detected keypoints and the processing time does not depend

on the number of kinds of objects and image resolutions. However, the local part of

object should be discriminative enough for finding correspondences correctly. This

requires that the object is texture-rich/complex-shaped and rather large in an im-

age. For those reasons, the local descriptor based approach cannot handle texture-

less/simple-shaped/small objects and is fragile to background clutters (see 2nd and

3rd rows in Figure 2.2).

The learning based approach is superior to the former two approaches in per-

formance because the features are designed and selected based on training samples

so that they are discriminative and robust against background clutters, occlusions

and transformations. It can handle texture-less/simple-shaped/small objects and is

scalable to increasing number of kinds of objects and image resolutions. However,

it requires large training dataset of positive and negative samples. It takes too much

time and cost for users to prepare and annotate training samples for each object and

scene.

The target of this thesis is a research on the practical algorithms which can be

applied to real factory scenes. In these applications, many of the target objects are

rigid and occluded objects are not inspected nor grasped. For those reasons, it is not

so important to handle occlusions and object deformations. However, the immediate

on-site training of target objects is crucially important because it is almost impossible

for customers to collect large dataset for each application. To summarize, we have

no choice but to employ the global descriptor (template matching) based approach
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which includes the methods based on voting from dense features.
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Chapter 3

2D Detection and Pose Estimation

of Texture-less Objects

In this chapter, we introduce a fast and robust algorithm for estimation of 2D object

position and pose. As described in Section 2.4, we employ the template matching

based approach in order to handle wider range of objects including texture-less ob-

jects such as mechanical/electronic parts. Our proposed image feature COF (Cumu-

lative Orientation Feature) relaxes the matching condition only for the appearance

changes by the changes in 2D object pose without losing the robustness against back-

ground clutters. Due to this, our model template with COF can handle wider range

of 2D object pose and our detection speed becomes faster using less number of tem-

plates.

The remaining contents of this chapter are organized as follows: Section 3.1

presents the existing work regarding COF. After explaining COF and whole pipeline

of our detection algorithm in Section 3.2, Section 3.3 shows the experimental results

including the comparison with the state-of-the-art methods and our failure cases.

Section 3.4 concludes this chapter.

3.1 Related Work

As described in Subsection 2.1.1, it has been shown that the gradient direction vec-

tors [24] and the quantized gradient orientations [25] were robust against cluttered

backgrounds and illumination changes. However, it was pointed out that the sim-

ilarity scores based on these features rapidly declined even if only slight changes
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in object pose occurred. To overcome this problem, dominant orientations within

a grid of pixels (DOT) [26] and spread orientation which allowed some shifting in

matching [48] were proposed. DOT and spreading orientation are robust to the pose

changes and slight deformations of target objects. However, they relax matching

conditions both in foregrounds and backgrounds, and this possibly degrade the ro-

bustness against cluttered backgrounds.

Berg et al. [132] have proposed Geometric Blur which blurred bothmodel and in-

put image using position-dependent blur kernels and they showed that it made tem-

plate matching more robust to affine distortions compared to normal blurring based

on isotropic kernels like a Gaussian filter. The spreading orientation isotropically

copy the orientation feature to neighboring pixels and is considered as a Gaussian

filter for quantized image features. We propose the position-dependent spreading

algorithm for quantized orientation features, which resembles Geometric Blur for

continuous values.

3.2 Proposed Method

This section describes our proposed 2D object detection and pose estimation pipeline

using COF. After COF is introduced in Subsection 3.2.1, the coarse-to-fine search

algorithm using COF templates is explained in Subsection 3.2.2. Then the refinement

of 2D object pose is described in Subsection 3.2.3.

3.2.1 COF: Cumulative Orientation Feature

There are few features on the surfaces of texture-less objects and the features rep-

resenting their shapes such as object contours are important for detection and pose

estimation. COF is designed based on histograms of gradient orientations in order to

make it more relevant to object shapes as well as more robust to transformations of

objects. HOG [133] is also based on the histograms of gradient orientations and has

been successfully applied to many tasks such as object class recognition and pedes-

trian detection. The main difference between HOG and COF is that COF uses the

histogram at each pixel while HOG uses the histogram at local regions called cells.

This enables COF to determine the positions and poses of objects more precisely.
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(a) (b) (c)

Figure 3.1 (a) The model image of the connector. (b) Colored gradient directions of
the model image. (c) Quantization of gradient directions disregarding their
polarities.

Moreover, COF is represented as a binary string which describes only the dominant

orientations of the histograms [26] and this leads to fast matching of the features

based on logical operations.

The way how to extract COF is explained using a connector shown in Figure

3.1 (a) which is a typical texture-less object. Firstly many training images are syn-

thesized based on randomized 2D pose parameters (X/Y translations, in-plane rota-

tions and object scales). The range of randomized parameters should be limited so

as to a single template can handle the appearance changes caused by the random-

ized parameters. In our research, the range of randomization were experimentally

determined and those were ±1 pixel in X/Y translations, ±15 degrees of in-plane

rotations and ±5% in object scales. Total of N images are generated.

Secondly image gradients of all the generated images are computed using Sobel

operators (the maximum gradients among RGB channels are used). To reduce false

edges due to image noise and illumination changes, only the gradient directions

whose magnitudes are larger than a certain threshold are used for feature extraction.

The colored gradient directions of the model image is shown in Figure 3.1(b).

To extract features which tolerate only the appearance changes by different ob-

ject pose, the orientation histograms are built at each pixel using all the generated

images of gradient vectors. The gradient vector is quantized into eight orientations

(Figure 3.1(c)) and voted to the histogram (add 1) at each pixel. The added values

to the neighboring bins are interpolated based on the ratios of the differences be-

tween the gradient directions and the centers of the bins. Only the orientations with
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Figure 3.2 Orientation histograms, cumulative orientation feature (ori) and their
weights (w) those were extracted at four exemplar pixels of the model im-
age. The dotted red lines of histograms showed thresholds for feature ex-
traction.

the higher magnitude than the threshold are voted and the maximum frequency is

equal to N . Lastly the dominant orientations at each pixel whose frequencies are

larger than a threshold (Th) are extracted and they are represented by 8-bit binary

strings. This is the cumulative orientation feature (COF) and COF represents the

gradient orientations which are probably observed when object pose is changed in a

compact form. The maximum frequencies of the histograms are also extracted and

used as the weighting factor for matching of features because the orientation fea-

tures with high frequencies are stable against the appearance changes by slightly

different object pose.

The orientation histograms, cumulative orientation features (ori) and their weights

on exemplar four pixels are shown in Figure 3.2. In our study, the number of gener-

ated images (N ) was 500 and the frequency threshold value (Th) was 75. The votes

were concentrated on a few orientations at the pixels along lines or arcs such as pixel
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Figure 3.3 The weighting factor of COF at each pixel. The brighter pixel values repre-
sented the larger weighting factors.

(1) and (4). At these pixels the important features with large weights were extracted.

On the contrary, the votes were scattered among many orientations at the pixels on

corners such as pixel (2) and (3). At these pixels the features with small or zero

weights were extracted. These tendencies are also observed on the image (Figure

3.3) where the brighter pixel values represents the larger weighting factors.

3.2.2 2D Object Detection and Pose Estimation

Amodel template which consists of COF can handle appearance changes caused by

different object pose generated in training stage (±15 degrees of in-plane rotation

and ±5% of object scale in our study). To cover a wider range of object pose param-

eters, additional templates are made using rotated and resized model images. We

prepared model image in every 20 degrees of in-plane rotation and in every 7.5 % of

object scale in order for whole 2D object space to be redundantly covered.

To make our detection and pose estimation faster, coarse-to-fine search [17] was

utilized. The image pyramid of the model image is made and COF is calculated on

the image of every in-plane rotation angle and object scale at every level of the pyra-

mid. The ranges for randomization of the pose parameters are large at the higher

levels of the image pyramid because the appearance changes by different rotation

angles and object scales look smaller comparing with those at lower levels. The

steps for rotation angles and scales are doubled when the resolution of image is

halved (one step up to the higher level) and the number of templates is reduced by

one fourth. This leads to the efficient search of 2D position and pose at the same

time.
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The j-th model template at level i is represented as

Tij : {xk, yk, orik, wk|k = 1, ..., n} . (3.1)

Each template has n COF features whose weighting factors are larger than a thresh-

old and each feature has position at model image (xk, yk)，quantized orientation

orik，and weighting factor wk.

In testing, the quantized orientation features are firstly extracted on each level

of the input image pyramid. Secondly, the whole area of the top level of the image

pyramid is scanned exhaustively using the templates of the top level of the tem-

plate pyramid. The possible candidates for the correct object pose whose similarity

scores between the input features and the model templates are larger than a search

threshold are further scanned using the templates of the lower levels of the pyra-

mid. Lastly, the 2D position and pose (in-plane rotation and scale) are determined

by non-maximum suppression algorithm at the bottom level. To avoid discarding

promising candidates at the upper levels, the search threshold at the upper levels is

decreased to 80% of the threshold at the bottom level. The similarity score is calcu-

lated as

score(x, y) =

∑n
k=1 δk(ori

I
(x+xk,y+yk)

∈ oriTk )∑n
k=1wk

. (3.2)

oriI is a quantized orientation feature of an input image and oriT is COF of a model

template. δk is a function which determines whether these orientations are same and

this is quickly calculated by bitwise operation.

δk(ori
I ∈ oriT ) =


wk if oriI ∧ oriT > 0,

0 otherwise.
(3.3)

wk is a weighting factor of COF and ∧ represents bitwise AND. This bitwise opera-

tion is further boosted by using SIMD instructions. We utilized Intel SSE2 intrinsics

which is capable of 128-bit registers for matching of 16 features at one time.
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3.2.3 Pose Refinement

The obtained 2D position and pose parameters can be further refined by registration

of 2D edge point pairs between the model and the input image. The edge points and

normal vectors of model images are extracted by Canny edge detector [22] in train-

ing phase. After the detection based on the hierarchical template matching in testing

phase, the model edge points are projected onto an input image using the detection

results as initial pose parameters. The paired edge points on the input image (x′, y′)

are searched along the normal vectors (nx, ny) of the model points (x, y) and they

are found as local maxima of image gradients along the search lines. After Ne edge

point pairs are collected, the sum of inner products between the normal vectors and

the estimated tangent vectors of the model edge points is minimized.

p = argmin
Ne∑
i=1

nx(M(x′)− x) + ny(M(y′)− y) (3.4)

M() represents the 2D transformation based on four 2D pose parameters (X/Y

translation, in-plane rotation and scale). This minimization problem is solved in a

closed form and the paired edge points on an input image are re-searched based on

the updated pose parameters p. This procedure is iterated until the update is less

than a certain threshold.

3.3 Experimental Evaluation

Five experiments were executed to evaluate our proposed algorithm. The influence

of the parameters of COF on its robustness against background clutters and the ap-

pearance changes by object transformations was evaluated in Experiment 1 (Subsec-

tion 3.3.1). In Experiment 2, the robustness of COF was compared with that of exist-

ing orientation features (Subsection 3.3.2). The accuracy and speed of the detection

algorithm based on COF was evaluated and compared with existing algorithms us-

ing D-Textureless dataset in Experiment 3 (Subsection 3.3.3) and CMU_KO8 dataset

in Experiment 4 (Subsection 3.3.4). In Experiment 5 (Subsection 3.3.5), the detec-

tion errors were investigated in the repeatability, linearity and rotation tests. Finally,
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Test image 1 Test image 2

Figure 3.4 Test image 1 and Test image 2 used in Experiment 1 and Experiment 2. The
only difference between these two images are in-plane rotation angle of the
connector (approximately by 10 degrees).

the failure cases of our algorithm mainly in Experiment 3 and 4 are introduced and

discussed in Subsection 3.3.6.

3.3.1 Experiment 1: Parameters for COF

In Experiment 1, we tested the influence of two parameters for extraction of COF on

the discriminative power of the feature. One of the parameters was the number of

training images (N ) and another was threshold for histogram frequencies (Th). Test

image 1 and Test image 2 in Figure 3.4 were prepared and scanned using the model

image (Figure 3.1(a)) when N and Th were varied. In Test image 1, the connector

was placed in a cluttered background while the in-plane rotation angle and size of

the connector were almost the same as those of the model image. In Test image 2,

the scene was almost the same as that of Test image 1 except for the in-plane rotation

angles of the connector. We evaluated the difference between a maximum score in

the foreground (FG) and in the background (BG) of the test images. The larger this

difference is, the feature is more discriminative and this leads to higher accuracy in

object detection and pose estimation.

The score differences when N was changed from 1 to 1000 is shown in Figure

3.5(a). Th was fixed as 15% of N . Both on Test image 1 and Test image 2, the score

difference changed significantly under N = 200 and then converged to almost the

same value around N = 500. This is because larger number of training images with

various 2D pose parameters contribute to the invariant score when the appearance

of target object is changes by object transformations.
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(a) (b)

Figure 3.5 Differences between maximum scores at foreground (FG) and background
(BG) of Test image 1 and Test image 2 when (a) the number of synthesized
images and (b) the threshold for histogram frequencies were changed.

The score difference of Test image 2 changed more drastically than that on Test

image 1 because normal model image without any transformations was always used

as first synthesized image. Therefore the score difference of Test image 1 was high

and that of Test image 2 was lowwhenN is small. The largerN was, the more stable

the score differences of both test images were. The score differences did not changed

any more when N was larger than 500 and we used N = 500 in our research.

The score differences when Th was changed from 0 to 250 is shown in Figure

3.5(b). N was fixed as 500. The differences of Test image 1 and Test image 2 increased

as Th grew from Th = 0. They reached to their maximum when Th was from 75 to

150 and then started decreasing. More gradient pixels and more quantized orienta-

tions are included into COF when Th is lower. These loose COF are matched with

any orientation features even on background. On the contrary, less pixels and less

quantized orientations are included into COF when Th is higher. These strict COF

cannot be matched with the orientation features of target object even with small 2D

transformation of object pose. To summarize, there is optimum Thwhich balance ro-

bustness against background clutters and tolerance to appearance changes of target

objects. Th = 75 was used in our research.
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3.3.2 Experiment 2: Evaluation of Orientation Features

In Experiment 2, COF with and without weighting factors were compared with ex-

isting quantized orientation [25], normalized gradient vector [24], and spreading ori-

entation [48]. The model image shown in Figure 3.1(a) and two test images shown

in Figure 3.4 were used for the comparison. The 2D histograms of similarity scores

calculated based on four orientation features on Test image 1 (left column) and Test

image 2 (right column) are shown in Figure 3.6. The difference between maximum

scores at foreground and at background on both test images are also shown in Table

3.1.

Quantized orientation

Quantized orientation is calculated by quantizing the image gradient direction (Fig-

ure 3.1(b)) into eight orientations (Figure 3.1(c)). The similarity score is calculated

by dividing the number of pixels which have same orientation between a model and

a test image by the number of all pixels of the model image. The similarity scores

at all pixels of two test images were shown in Figure 3.6(a). Though the maximum

scores at background were low on both test images, the maximum scores at fore-

ground were substantially decreased on Test image 2. Then the maximum score

difference (FG - BG) on Test image 2 was lower than that of COF (Table 3.1). These

results shows that quantized orientation is robust to background clutters but fragile

to appearance changes of target objects.

Normalized gradient vector

Steger et al. [24] have proposed normalized gradient vector which is a unit vector

of an image gradient and have shown that the sum of inner products of normalized

gradient vectors was occlusion, clutter and illumination invariant. This was demon-

strated on our experimental result on Test image 1 (Figure 3.6(b)). However, the

maximum score at foreground was substantially decreased on Test image 2 and this

indicates that this feature does not handle appearance changes of target objects. This

was also supported by the significant decrease of score difference between FG and

BG on Test image 2 shown in Table 3.1.



3.3. Experimental Evaluation 37

(a)

(b)

(c)

(d)
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(e)

Figure 3.6 2D histograms of similarity scores on Test image 1 (left column) and Test
image 2 (right column) based on (a) quantized orientation, (b) normalized
gradient vector, (c) spreading orientation, (d) COF and (e) COF without
weighting factors. The maximum scores at foreground and background are
presented in each figure.

Spreading orientation

Hinterstoisser et al. [48] proposed spreading orientation to relax the matching con-

dition for quantized orientations by copying them to neighboring pixels of a test

image. As they described in the paper, the quantized orientations on the test images

were spread in the range of±4 pixels and combined them by bitwise ADD. The sim-

ilarity scores between the spread orientation of the test images and the quantized

orientation of the model image were calculated and shown in Figure 3.6(c). The

maximum scores at background are higher than those of quantized orientation on

both test images and the score difference on Test image 1 is the lowest in Table 3.1.

These results indicate that spreading orientation is fragile to background clutters.

Though the maximum scores at foreground were high on both test images and the

tolerance to appearance changes of target objects was improved, the score difference

was the lowest also on Test image 2 (Table 3.1). This is because spreading operation

relaxes the matching conditions both at foreground and background.

COF

COF (Subsection 3.2.1) was extracted on the model image and the model template is

scanned at the quantized orientation features on test images. The similarity scores

at foreground and background on Test image 1 were increased (Figure 3.6(d)) from
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Table 3.1 Differences between maximum scores at foreground and background (FG−
BG) on Test image 1 and Test image 2.

Test image 1 Test image 2

Quantized 0.574 0.083

Normalized 0.446 0.015

Spreading 0.407 0.050

COF 0.537 0.512

COF w/o weight 0.492 0.480

those of quantized orientation and the score difference was a little decreased from

quantized orientation (Table 3.1). These results demonstrated that COF was robust

against background clutters. Additionally, the scores at foreground and background,

and their difference on Test image 2 were not so changed from those on Test image 1.

This shows that COF can improve the tolerance to the appearance changes of target

objects without degrading the robustness against background clutters.

COF without weighting factors

To test the effect of weighting factors on COF, the similarity scores were calculated

using equal weights for all features and shown in Figure 3.6(e). The scores at back-

ground on both test images were increased and the differences between FG and

BG scores on both test images were decreased compared with those of COF with

weights. The COF with low weights tend to have many orientation as shown in

Figure 3.2 and these features are inclined to be matched with any orientations both

at foreground and background. Using equal weights enlarges the influence of such

features and this degrades the robustness against background clutters. Therefore,

weighting factors of COF are important for its discriminative power.

3.3.3 Experiment 3: Evaluation on D-Textureless Dataset

Experimental settings

In Experiment 3, our proposed detection algorithm based on COF was evaluated

on a publicly open D-Textureless dataset [74]. The dataset consists of nine model

images and 54 test images. The target objects are texture-less such as a nipper and
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Figure 3.7 Nine model images of D-Textureless dataset.

Table 3.2 The parameters used in Experiment 3. The number of generated images (N )
and threshold of orientation histograms (Th) for COF extraction. The inter-
vals, ranges and numbers of templates for rotations and scales in template
generation.

N Th rotation (deg) scale (%)

500 75 20◦ in ±180◦ (18) 7.5% in ±30% (9)

a spanner shown in Figure 3.7. The resolution of the images is 640 × 480 pix and

the test images include the changes of the objects’ in-plane rotation and scale under

background clutters and partial occlusions. Some of test images are shown in Figure

3.8. The bounding boxes and model edge points are drawn based on the detected

results by our algorithm.

To compare our proposed method with existing research, Steger’s algorithm

based on inner products of gradient direction vectors [24], LINE-2D based on spread-

ing orientation [48] and BOLD based on local line segments [74] were also evaluated

on the dataset. We utilized the implementation of Steger’s algorithm "shape based

matching" in "HALCON 11.0" (MvTEC, Germany) which is commercial software li-

brary for machine vision. We also utilized LINE-2D implemented in the open source

library "OpenCV 2.4.11" and the binary software of BOLD which was provided by

the authors. When themodel images were trained in HALCON and COF, the images

were rotated in ±180 degrees and resized in ±30%. The model data prepared in the

dataset was used for LINE-2D. The parameters for our algorithm are summarized in

Table 3.2. All the programs were run on a same PC (Core i7 3770 3.4GHz and 8GB
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Figure 3.8 Example images of D-Textureless dataset used in Experiment 3. The edges
of the objects extracted from the model images (white lines) and the bound-
ing boxes (red and green lines) are drawn based on the detection results by
our proposed method.

RAM) using a single CPU core. When the bounding box of detection results (BBdt)

overlap sufficiently that of ground truth (BBgt), the result was counted as correct

[3]. The threshold for overlap was 0.7 in our research.

area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
> 0.7 (3.5)

Detection accuracy

The graph in Figure 3.9 shows the relationships of four detection methods between

correct detection rate (DR) and false positives per image (FPPI). These data were

plotted when the search thresholds were changed. Better detection results were plot-

ted on left-upper area. Correct detection rates and processing times when FPPI = 1.0

were shown in Table 3.3. From these results, our proposed method showed higher

detection accuracy than existing template-based methods such as Steger’s method
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Figure 3.9 DR - FPPI curve on D-Textureless dataset in Experiment 3.

and LINE-2D. Furthermore, its detection accuracy was comparable to that of BOLD

which was based on local descriptors.

The major difference among three template-based algorithms (Steger’s, LINE-2D

and COF) is the feature used. Our algorithm used COF, Steger’s used normalized

gradient vector, and LINE-2D used spreading orientation. Normalized gradient vec-

tor is robust to background clutters but not tolerate to the appearance changes of tar-

get objects as described in Experiment 2 (Subsection 3.3.2). On the contrary, spread-

ing orientation is tolerate to the appearance changes of target objects but not robust

to background clutters. COF can balance the robustness and the tolerance, and this

is why our proposed method surpass these two template-based existing method in

detection accuracy.

In general, the detection algorithms based on local descriptors such as BOLD

are more robust to partial occlusions and transformation of target objects than tem-

plate matching based algorithms. The tolerance to the appearance changes of target

objects are improved in COF by extracting orientations from geometrically trans-

formed images and the model templates are prepared so that the detection range is

covered with overlapped ranges of each COF template. Regarding the robustness to

occlusion, the local descriptors on edges of texture-less objects does not have enough

discriminative power as the descriptors on textures of texture-rich objects. Therefore

it is considered that local descriptor based algorithm for texture-less object detection

does not have much advantage about robustness against occlusions over template



3.3. Experimental Evaluation 43

Table 3.3 Correct detection rate and processing time (ms) when FPPI = 1.0 on D-
Textureless dataset.

detection rate processing time

Steger 0.466 396.4

LINE-2D 0.492 47.7

BOLD 0.846 177.9

COF 0.916 31.8

based algorithms. From these reasons, our proposed method showed almost the

same detection accuracy as BOLD.

Processing time

The speed of our detection algorithm was faster than the existing algorithms in Ta-

ble 3.3. Steger’s algorithm uses the inner product of normalized gradient vectors as

similariry score and this calculation is based on a floating point number. COF uses

8-bit binary number as their orientation feature and the similarity score is calculated

quickly by SIMD instructions for logical operations. This is why COF exceeds Ste-

ger’s algorithm in detection speed. Regarding the processing time of BOLD, it took

about 106 ms in average for extracting local descriptors based on LSD [23]. COF is

based on image gradients which require only Sobel filtering as preprocessing and

this lead to the large difference between COF and BOLD in detection speed.

LINE-2D also uses 8-bit binary number for encoding quantized orientations and

the similarity score based on logical operations. Furthermore, the arrangement of

orientation features on a computer memory are re-aligned for sequential access and

the similarity score is computed just by adding the pre-computed values by uti-

lizing look-up tables. These boost the detection speed of LINE-2D. However, the

model template of COF can handle wider range of rotation angles and object scales

compared to spreading orientation because COF balances the robustness against

background clutters and the tolerance to the appearance changes of target objects

as shown in Experiment 2. This allows us to reduce the number of templates for

detection. In Experiment 3, the number of templates of COF were 162 (18 rotation

and 9 scales) and this was fewer 75 % than the number of templates of LINE-2D
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Figure 3.10 Eight model images of CMU_KO8 dataset. Top row: Bakingpan and
Colander. 2nd row: Cup and Pitcher. 3rd row: Saucepan and Scissors.
Bottom row: Shaker and Thermos. The mask images for training are also
shown.

(650 in average). To summarize, the fast detection speed of LINE-2D comes from

the efficient computation of similarity scores and that of COF comes from the fewer

number of templates used for matching.

3.3.4 Experiment 4: Evaluation on CMU_KO8 Dataset

Experimental setting

In Experiment 4, our proposed detection algorithmwas evaluated on a publicly open

CMU_KO8 dataset [134]. The target objects are eight texture-less objects which are

used in daily life such as mugs and pans. The dataset consists of two scenes; single

viewpoint and multiple viewpoints. The single-view dataset consists of one model

image and 100 test images from a single viewpoint. Themulti-view dataset consist of

25 model images and 100 test images from multiple viewpoints. The model images

of single-view dataset is shown in Figure 3.10. The resolution of the images is 640×

480 pix and the target objects are heavily occluded in the test images. Some of test
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Figure 3.11 Examples of test images from CMU_KO8 dataset (single-view). In each
panel, the left is an input image and the right is result image where the
bounding box and matched model edge points detected by our algorithm
are drawn.
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Table 3.4 The parameters used in Experiment 4. The number of generated images (N )
and threshold of orientation histograms (Th) for COF extraction. The ranges
and numbers of templates for rotations and scales in template generation.

N Th rotation (deg) scale (%)

500 75 ±0◦ (1) ±0% (1)

images from single-view dataset and detection results are shown in Figure 3.11. The

bounding boxes and model edge points are drawn based on detected results by our

algorithm in the result images.

Our detection program ran on the same PC as in Experiment 3 (Core i7 3770

3.4GHz, single CPU core was used). The parameters for our algorithm are summa-

rized in Table 3.4. The criteria for correct detection result was also the same (Equa-

tion 3.5) but the threshold was changed from 0.7 to 0.5 which was used in the paper

which introduced CMU_KO8 dataset [134].

Existing algorithms

The authors [135] provided the evaluation results of existing methods on CMU_KO8

dataset and these methods were compared to our algorithm. The evaluated algo-

rithms are listed below:

LINE-2D [48] is fast and robust template matching for detection of texture-less

objects, which is based on the spreading orientation and the linearized memory.

Robust LINE-2D (rL2D) [134] is a modified version of original LINE-2D. rL2D

allows only the matching between the model and the input images those have same

quantized orientation. This makes template matching more robust against cluttered

background than LINE-2D.

Robust LINE-2D with gPb (rL2D-gpb) [135] uses gPb edge detector based on

texture and color segmentations [136] instead of Sobel filter used in original LINE-

2D.

Oriented Chamfer Matching (OCM) [137] extended Chamfer matching [16] to

penalize the dissimilarity of edge orientations. They added the penalty term for the

dissimilarity of edge orientations to the distance to the nearest edge pixel.
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Figure 3.12 DR - FPPI curve on CMU_KO8 dataset (single-view).
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Figure 3.13 DR-FPPI curve on CMU_KO8 dataset (multi-view).
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Histogram of Oriented Gradient (HOG) [133] represents an object as grids of

gradient histograms. HOG of training image is learned using exemplar SVM [102]

for each object. In testing, HOG of the input image is convolved with the learned

template.

Gradient Network (GN) [135] describes the local connectivity based on gradient

orientations, color and edge potentials. The shape similarity is evaluated through

message passing algorithm.

Gradient Network with gPb (GN-gpb) [135] uses gPb edge detector for com-

puting the edge potentials.

Detection accuracy

The graphs showing the relationships between correct detection rate (DR) and false

positives per image (FPPI) for eight methods on single-view dataset were presented

in Figure 3.12. The same graph on multi-view dataset were presented in Figure 3.13.

The detection rates when FPPI = 1.0 on single-view dataset were shown in Table

3.5 and those on multi-view dataset were shown in Table 3.6. These results show

that the detection accuracy of our algorithm based on COF is comparable to GN or

GN-gpb and higher than other existing methods on both of single- and multi-view

dataset. Only the detection rate on single-view colander is much lower than other

existing method. This is because the dataset includes small viewpoint changes and

the appearance of some test images are different from the model image. When the

model images of multi-view dataset are used for testing of single-view colander, the

detection rate increased to 0.836.

The existing algorithms other than GN uses the similarity scores based on the

summation of a matching result at each pixel or grid. Our proposed COF is also

based on per-pixel matching and the main difference from these existing methods is

the robustness to background clutters and the tolerance to the appearance changes of

target objects. As shown in Experiment 2, LINE-2D and its variants uses the spread-

ing orientation and their robustness to background clutters is lower than COF. OCM

and HOG are also computed based only on single model image per view point and

their method for improving the tolerance (distance map of edges and spatial grids

for gradient histogram) are isotropic. These improvements are not specialized for
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Table 3.5 Correct detection rate when FPPI = 1.0 on CMU_KO8 dataset (single-view).

L2D rL2D rL2D-gpb OCM HOG GN GN-gpb COF

Bakingpan 0.460 0.679 0.410 0.660 0.690 0.890 0.859 0.863

Colander 0.579 0.870 1.000 0.740 0.850 0.920 0.970 0.491

Cup 0.450 0.800 0.931 0.710 0.860 0.980 0.960 0.967

Pitcher 0.449 0.840 0.670 0.760 0.770 0.850 0.888 0.960

Saucepan 0.495 0.820 0.710 0.700 0.694 0.990 1.000 0.995

Scissors 0.290 0.621 0.270 0.530 0.750 0.870 0.863 0.907

Shaker 0.292 0.680 0.910 0.492 0.720 0.840 0.928 0.850

Thermos 0.569 0.796 0.500 0.710 0.800 0.940 0.940 0.951

Mean 0.448 0.763 0.675 0.663 0.767 0.910 0.926 0.873

Table 3.6 Correct detection rate when FPPI = 1.0 on CMU_KO8 dataset (multi-view).

L2D rL2D rL2D-gpb OCM HOG GN GN-gpb COF

Bakingpan 0.324 0.411 0.190 0.450 0.650 0.968 0.900 0.822

Colander 0.530 0.810 0.950 0.314 0.820 0.930 0.940 0.894

Cup 0.340 0.671 0.780 0.424 0.900 0.970 0.970 0.983

Pitcher 0.430 0.650 0.110 0.283 0.680 0.860 0.830 0.883

Saucepan 0.410 0.760 0.640 0.592 0.820 0.990 0.980 0.982

Scissors 0.366 0.598 0.070 0.167 0.640 0.930 0.800 0.959

Shaker 0.338 0.610 0.500 0.184 0.590 0.840 0.890 0.869

Thermos 0.377 0.750 0.400 0.357 0.850 0.930 0.950 0.971

Mean 0.389 0.657 0.455 0.347 0.744 0.927 0.908 0.920

the shapes of target objects and lead to degraded robustness against background

clutters.

Gradient networks (GN) calculates the probability how each pixel of an input im-

age is similar to the model template using neighboring pixels and evaluates the con-

tiguity of pixels which have high probabilities. This makes it robust to background

clutters. Though COF calculates the similarity score just by adding the matching

result at each pixel, each feature point has a weight representing the probability that

the orientation is observed after 2D transformation of the target. This suggested that

each feature point of COF represents the gradient orientations of its local area and

this leads to similar effect of GN’s similarity score which evaluates the contiguity of
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Table 3.7 Processing time (milliseconds) when FPPI = 1.0 on CMU_KO8 dataset
(single- and multi-view).

Single view Multi view

Bakingpan 3.5 15.5

Colander 2.6 22.3

Cup 2.3 22.7

Pitcher 3.6 26.4

Saucepan 3.3 19.1

Scissors 3.5 39.6

Shaker 4.1 37.6

Thermos 5.6 21.6

Mean 3.5 25.6

similar features. This is why the detection accuracy of COF is comparable to GN.

Processing time

The processing times when FPPI = 1.0 are presented in Table 3.7. It takes on average

3.5milliseconds for single-view dataset and 25.6milliseconds formulti-view dataset.

These are shorter than the processing time on D-Textureless dataset in Experiment

3 because CMU_KO8 dataset does not include any rotations and changes in size

of object and the numbers of model templates are less than those on D-Textureless

dataset.

Though the authors of CMU_KO8 dataset did not provide details of processing

time in their experimental evaluation, they described that GN took on average 1 sec-

ond per image and this is much slower than our COF-based detection. The results

in Experiment 3 show that COF is faster than LINE-2D. Regarding OCM and HOG,

they include pre-processing steps such as distance transform and building normal-

ized gradient histograms. Additionally, their similarity scores are based on floating

point arithmetic which is slower than logical operation of binarized features in COF

and LINE-2D. From these results, our object detection pipeline is the fastest among

these existing methods.



52 Chapter 3. 2D Detection and Pose Estimation of Texture-less Objects

3.3.5 Experiment 5: Detection Errors

The assembly applications in factory automation require precise alignment between

parts andmachines approximately by 100 µm or less. This is equal to sub-pixel/sub-

degree alignment accuracy at an image coordinate system. We investigated the de-

tection errors of our detection algorithm in three types of test: repeatability, linearity

and rotation.

Experimental setting

We used five objects and one alignment mark for the error testing. These objects

are captured using industrial USB camera (STC-MC33USB, resolution: 640 × 480,

OMRON SENTECH CO., LTD.) with 16 mm lens. The example images are shown

in Figure 3.14. For the repeatability test, 40 images were taken per object while the

object is still in the same position. For the linearity test, 20 images were taken per

object while the object on a mechanical stage was moved along X axis of the image

approximately by 0.1 pixel. For rotation test, the image was rotated by 0.1 degree

based on bilinear interpolation, which amounted to 3599 images per object.

Result

The detection errors in the repeatability, linearity and rotation tests are shown in Ta-

ble 3.8. The error of repeatability is calculated as the standard deviation of the esti-

mated positions along x axis. The errors of linearity and rotation are calculated as the

root mean square errors of the residuals from least squares fitting for X-translations

and rotation angles. The error values shown in the table are similar to those of [24].

These errors in pixels are equal to 6 µm in real world (0.3 mm per pixel in our cam-

era) and these are small enough for the precise alignment required in factory au-

tomations even if there might be various disturbances like noise, blur and partial

occlusions.

3.3.6 Failure Cases

Typical examples of our failure cases in the experimental evaluation are presented

in Figure 3.15. These failures are mainly due to the following reasons.
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Figure 3.14 Example images of the detection error tests. 1st row: Connector and Key.
2nd row: Frisk and Padlock. 3rd row: Dsub and Cross.
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Table 3.8 Detection errors in repeatability, linearity and rotation.

repeatability (pix) linearity (pix) rotation (deg)

Connector 0.006 0.022 0.023

Key 0.005 0.020 0.010

Frisk 0.006 0.018 0.038

Padlock 0.007 0.014 0.016

Dsub 0.005 0.017 0.017

Cross 0.013 0.015 0.013

Mean 0.007 0.018 0.019

Partial occlusion

Our proposed algorithm sometimes fails to detect occluded objects (1st row of Fig-

ure 3.15). We use the orientation of gradients as a feature for matching and clear

gradients are often observed around the outline of the objects. Therefore, the occlu-

sions of object outlines have large influence on our detection rate. In D-Textureless

dataset, the objects are not detected when approximately 40 % of the object outline

is occluded. Contrastingly in CMU_KO8 dataset, the objects whose outline is oc-

cluded by more than 60 % are correctly detected (Figure 3.11). This is because the

robustness against partial occlusions depends on the variation of the appearance of

model templates. In-plane rotations and changes in scale of the objects also should

be searched in D-Textureless dataset, but not in CMU_KO8 dataset. More variations

of model templates tend to increase false positives at the background and higher

thresholds for the similarity scores are required to suppress them. This degraded

our robustness against partial occlusions in D-Textureless dataset.

Background clutter

The examples of wrongmatches in background are shown in 2nd row (D-Textureless

dataset), 3rd row (CMU_KO8 dataset) and 4th row (our additional dataset) of Fig-

ure 3.15. The wrong matches occur at the objects in backgrounds which have similar

shapes or patterns of texture. Moreover, shadows and light reflections also some-

times cause false positives as shown in the center and right of 4th row. The simple
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Figure 3.15 Example images of the failure cases of our proposed method. 1st row: The
target objects from D-Textureless dataset were not recognized due to par-
tial occlusions. The examples of false positives from D-Textureless dataset
(2nd row), CMU_KO8 dataset (3rd row) and our additional dataset (4th
row) due to background clutters, shadows and light reflections.
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shape of the target object like paper clips (left of 4th row) is naturally prone to be

matched with the background.

3.4 Conclusion

In this chapter, we proposed the cumulative orientation feature (COF) which is ex-

tracted from hundreds of randomly 2D-transformed images. The experimental re-

sults showed that our COF tolerated the appearance changes caused by the changes

in 2D object pose without degrading the robustness against background clutters

compared to the existing orientation features. We also proposed the hierarchical

object detection pipeline using COF. Our proposed method was evaluated on two

publicly open dataset and compared with the existing detection algorithms. The

results showed that our proposed method was faster and more robust against back-

ground clutters and partial occlusions than the existing methods. Moreover, the de-

tection errors of our algorithm is approximately 0.007 pixel in the repeatability test,

0.018 pixel in the linearity test and 0.019 degrees in the rotation test. These errors

are small enough for any alignment applications of parts and machines in factory

automation.
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Chapter 4

3D Object Detection and Pose

Estimation from a Monocular

Image

In this chapter, a fast and robust algorithm for estimation of 3D object position and

pose (6-DoF pose) from a monocular image is presented. Our proposed algorithm is

based on template matching and the model templates are made only from 3D CAD

of target objects. As described in Section 2.4, the template matching based approach

can handle texture-less objects such as hammers, mugs and mechanical/electronic

parts those are often seen in daily lives and factories. The model training which

requires less time and effort is also important for on-site training in real applications

using service/industrial robots.

We propose a novel image feature and a tree-structured model for fast template

based 6-DoF pose estimation. The former is Perspectively Cumulated Orientation

Feature (PCOF) extracted using 3D CAD data of target objects. PCOF is robust to

the appearance changes caused by the changes in 3D object pose, and the num-

ber of templates are greatly reduced without loss of pose estimation accuracy. The

latter is Hierarchical Pose Tree (HPT), which is also introduced for efficient 6-DoF

pose search. HPT consists of hierarchically clustered templates whose resolutions

are different at each level, and it accelerates the subwindow search by a coarse-to-

fine strategy with an image pyramid.

The remaining contents of this chapter are organized as follows: Section 4.1 pre-

sented related work on image features for texture-less object detection and data
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structures for efficient search. Section 4.2 introduces our proposed PCOF, HPT and

6-DoF pose estimation algorithm based on them. Section 4.3 evaluates our proposed

method and compare it with state-of-the-art methods. Section 4.4 concludes this

chapter.

4.1 Related Work

This section presents the existing researches which are closely related to our pro-

posed PCOF and HPT. PCOF is developed from COF (Cumulative Orientation Fea-

ture) which is introduced in Subsection 3.2.1. Though COF is robust against the

appearance changes caused by the changes in 2D object pose, it does not explicitly

handle appearance changes caused by the changes in 3D object pose.

Search strategies and data structures are also important for template based ap-

proaches. The tree-structured models are popular in the nearest neighbor search

for image classification [138, 139, 140] and for joint object class and pose recogni-

tion [54]. These tree-structured models were also used in joint 2D detection and 2D

pose recognition [141] and joint 2D detection and 3D pose estimation [142]. Though

they offered efficient search in 2D/3D object pose space, they were not efficient in

2D image space (X/Y translations). The coarse-to-fine search [12, 17] is well-known

efficient search in 2D image space. Ulrich et al. [47] have proposed a hierarchical

model which combined the coarse-to-fine search and the viewpoint clustering based

on similarity scores between templates. However, their model is not fully optimized

for the search in 3D pose space when 2D projection images from separate viewpoints

are similar, as is often the case with texture-less objects.

4.2 Proposed Method

Our proposed method consists of a image feature for dealing with the appearance

changes caused by the changes in 3D object pose (Subsection 4.2.1) and a hierarchi-

cal model for an efficient search (Subsection 4.2.2). The template based 6-DoF pose

estimation algorithm using both PCOF and HPT is described in Subsection 4.2.3.
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Figure 4.1 3D CAD of L-Holder, its coordinate axes and a sphere for viewpoint sam-
pling.

4.2.1 PCOF: Perspectively Cumulated Orientation Feature

Our proposed PCOF is developed from COF [143]. COF can handle appearance

changes induced only by 2D object pose changes (in-plane rotations and scales) and

the possible application is detection and pose estimation of planar objects on flat

tables or conveyor belts. On the other hand, PCOF explicitly handle appearance

changes caused by 3D object pose changes and the possible application could be

extended to detection and pose estimation of objects with various shapes those are

randomly piled in a bin.

The way how to extract PCOF is explained using L-Holder shown in Figure 4.1

which is a typical texture-less object. Firstly many 2D projection images are gener-

ated using 3D CAD from randomized viewpoints. The viewpoints are determined

by four parameters those are rotation angles around X/Y axes, a distance from the

center of the object and a rotation angle around a optical axis. The range of random-

ized parameters should be limited so as to a single template can handle the appear-

ance changes caused by the randomized parameters. In our research, the range of

randomizationwere experimentally determined and thosewere±12 degrees around

X/Y axes, ±40 mm in the distance and ±7.5 degrees around the optical axis. Figure
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Figure 4.2 Examples of the generated projection images from randomized viewpoints
around the viewpoint on z-axis (upper-left image). Surfaces of objects are
drawn by randomly selected colors in order to extract distinct image gradi-
ents.

4.2 shows examples of generated projection images. The upper-left image is the pro-

jection image from the viewpoint where all rotation angles are zero and the distance

from the object is 680 mm, and this viewpoint is at the center of these randomized

examples. In generation of projection images, the neighboring meshes where the

angle between them is larger than a threshold value are drawn by different color in

order to extract distinct image gradients. In this thesis, the threshold was 30 degrees.

Secondly image gradients of all the generated images are computed using Sobel

operators (the maximum gradients among RGB channels are used). We use only the

gradient directions and discard the gradient magnitudes because the magnitudes

depend on the randomly selected mesh colors. The colored gradient directions of

the central image (the upper-left in Figure 4.2) are shown in Figure 4.3(a). Then

the gradient direction is quantized into eight orientations disregarding its polarities

(Figure 4.3(b)), and the quantized orientation is used for voting to the orientation

histogram at each pixel. The quantized orientations of all the generated images are

voted to the orientation histograms at the corresponding pixels. Lastly the dominant

orientations at each pixel are extracted by thresholding the histograms and they are

represented by 8-bit binary strings [26]. Themaximum frequencies of the histograms

are used as weighting factors in calculating a similarity score.

The orientation histograms, extracted binary features and their weights on ar-

bitrarily selected four pixels are shown in Figure 4.4. In our study, the number of
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(a) (b)

Figure 4.3 (a) Colored gradient directions of the upper-left image in Figure 4.2. (b)
Quantization of gradient directions disregarding their polarities.

generated images was 1,000 and the threshold value was 120. The votes were con-

centrated on a few orientations at the pixels along lines or arcs such as pixel (2) and

(3). At these pixels, the important features with large weights were extracted. On the

contrary, the votes were scattered among many orientations at the pixels on corners

and complicated structures such as pixel (1) and (4). At these pixels, the features

with small or zero weights were extracted. These tendencies are also observed on

the image in Figure 4.5 which represents the feature weights as pixel values. The

template T with n PCOF (excluding the pixels with zero-weight) represented as fol-

lows:

T : {xi, yi, orii, wi|i = 1, ..., n} , (4.1)

and the similarity score is given by following equation,

score(x, y) =

∑n
i=1 δk(ori

I
(x+xi,y+yi)

∈ oriTi )∑n
i=1wi

. (4.2)

If the quantized orientation of the test image (oriI ) is included in the PCOF tem-

plate (oriT ), the weight (w) is added to the score. The delta function in Eqn. (4.2)

is calculated quickly by a bitwise AND operation (the symbol ∧). Additionally, this

calculation can be accelerated using SIMD instructions where multiple binary fea-

tures are matched by a single instruction.

δi(ori
I ∈ oriT ) =


wi if oriI ∧ oriT > 0,

0 otherwise.
(4.3)
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Figure 4.4 Examples of the orientation histograms, binary features (ori) and their
weights (w) on arbitrarily selected four pixels. Red dotted lines show the
threshold for feature extraction.

4.2.2 HPT: Hierarchical Pose Tree

A single PCOF template can handle the appearance changes caused by 3D pose

changes generated in training (±12 degrees around X/Y axes, ±40 mm in the dis-

tance and ±7.5 degrees around the optical axis). To cover a wider range of 3D object

pose, additional templates are made at every vertices of the viewpoint sphere in

Figure 4.1 which contains 642 vertices as a whole and two adjacent vertices are ap-

proximately 8 degrees apart. Additionally, the templates are made in every 30 mm

Figure 4.5 The weights of PCOF. This image represents the feature weights for L-
Holder as pixel values.



4.2. Proposed Method 63

Algorithm 1 Building hierarchical pose trees

Input: a number of PCOF templates T and their orientation histograms H
Output: hierarchical pose trees
T ′
0 ← T

H ′
0 ← H

i← 1
loop
Ci ← cluster the templates in T ′

i−1

for each cluster Cij do
Hij ← add histograms at each pixel of H ′

i−1 ∈ Cij

Hij ← normalize histograms Hij

Tij ← thresholdingHij and extract new binary features and weights
end for
for each Tij and Hij do
H ′

ij ← add histograms of nearby 2× 2 pixels
H ′

ij ← normalize histograms H ′
ij

T ′
ij ← thresholdingH ′

ij and extract new binary features and weights
end for
N ′

i ←minimum number of feature points in T ′
i

if N ′
i < Nmin then

break
else
i← i+ 1

end if
end loop

in the distance to the object and in every 5 degrees around the optical axes. These

PCOF templates can redundantly cover the whole 3D pose space.

Most of the image gradients are extracted around object boundaries of texture-

less objects and the feature vectors of the projection images from totally different

viewpoint are often similar. This is often the case with coarse image levels of the

image pyramids for a coarse-to-fine search. We utilize this in order to make search

of both 3D pose and 2D position more efficient and propose our hierarchical pose

tree (HPT) which are built by integration and hierarchization of templates based

solely on the similarities between them.

HPT is built in a bottom-up way starting from a lot of PCOF templates and their

orientation histograms. The algorithm is shown in Algorithm 1 and it consists of

three steps: clustering, integration and reduction of resolutions. Firstly all the tem-

plates are clustered based on the similarity scores (Eqn. 3.2) between templates using

X-means algorithms [144]. In X-means clustering, the optimum number of clusters

are estimated based on Bayesian information criteria (BIC). Secondly the orientation
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(a) (b)

Figure 4.6 (a) Integration of orientation histograms. (b) Hierarchization of orientation
histograms.

histograms which belong to a same cluster are added and normalized at each pixel.

Then the clustered templates are integrated to new templates by extracting the bi-

nary features and the weights from these integrated orientation histograms (Figure

4.6(a)). Lastly the resolutions of the histograms are reduced to half by adding and

normalizing histograms of neighboring 2 × 2 pixels (Figure 4.6(b)). Then the low-

resolution features and weights are extracted from these histograms. These proce-

dures are iterated until the minimum number of feature points contained in low

resolution templates is less than a threshold value (Nmin). In this thesis, Nmin was

50.

Part of HPT are shown in Figure 4.7. When the range of 3D pose was as same

as the settings of experiment 2 (± 60 degrees around X/Y axes, 660 mm – 800 mm

in the distance from the object and ± 180 degrees around the optical axis), the total

number of PCOF templates amounted to 73,800 (205 viewpoints × 5 distances × 72

angles around the optical axis). These initial templates were clustered and integrated

into 23,115 templates at the end of first round in Algorithm 1, and the number of

templates was further reduced to 4,269 at second round and to 233 at third round.

In this experimental setting, the iteration of hierarchization stopped at third round.

4.2.3 Pose Estimation and Refinement

In 6-DoF pose estimation, firstly the image pyramid of a test image is made and

the quantized orientations are calculated on each pyramid level. Then the top level

of the pyramid is scanned using the root nodes of HPT (e.g. the number of root
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Figure 4.7 Part of hierarchical pose trees are shown. Green and red rectangles repre-
sent templates used for matching. The bottom templates are originally cre-
ated PCOF templates and the tree structures are built in a bottom-up way
by clustering similar templates, integrating them into new templates and
decreasing the resolutions of the templates. In estimation of object pose,
HPT is traced from top to bottom along the red line, and the most promis-
ing template which contains the pose parameters is determined.

nodes was 233 in experiment 2). The similarity scores are calculated based on Eqn.

4.2. The promising candidates whose scores are higher than a search threshold are

matched with the templates at the lower levels, and they trace HPT down to the

bottom. Finally the estimated results of 2D positions on a test image and thematched

templates which have four pose parameters (three rotation angles and a distance

from a camera) are obtained after non-maximum suppressions. 6-DoF object pose of

these results are calculated by solving PnP problems based on the correspondences

between 2D feature points on the test image and 3D points of CAD [64].

The obtained 6-DoF object pose is not precise due to the sampling of viewpoints,

camera roll angles and distance to the object. Using this pose parameters as initial

values, 6-DoF pose is refined based on the registration of 2D edge points pairs be-

tween the model and the input image. Firstly, 3D CAD is projected to the input

image plane using the initial 6-DoF pose parameters and internal camera parame-

ters. Then the image gradients are calculated using Sobel filter both on the projected

and input images. The model edge points (x, y) and normal vectors (nx, ny) are ex-

tracted based on the local maxima of the gradients. The corresponding edge points

(x′, y′) on the input image are found as a local maxima of the input gradients along

the model normal vectors. Lastly, N point pairs are found and the sum of inner
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products between the normal vectors and the estimated tangent vectors of the model

edges is minimized using Levenberg-Marquardt algorithm.

p = argmin
N∑
i=1

nx(M(x′)− x) + ny(M(y′)− y) (4.4)

M() represents the combination of 3D transformation based on 6-DoF pose pa-

rameters and 2D projection based on internal camera parameters. The pose parame-

ters p are updated and 3D CAD is projected again using new pose parameters. This

optimization is iterated until the update is less than certain thresholds.

4.3 Experimental Evaluation

We carried out two experiments. One is to evaluate the robustness of PCOF against

cluttered backgrounds and the appearance changes caused by the changes in 3D

object pose. Another is to evaluate the accuracy and the speed for our combined

PCOF and HPT to estimate 6-DoF pose of texture-less objects. Both experimental

evaluation include the comparison with state-of-the-art methods. Additionally, the

effects of perspective distortions on our method are described in Subsection 4.3.3

and the failure cases of our proposed method are introduced in Subsection 4.3.4.

Nine kinds of metallic parts are prepared for the evaluation (Figure 4.8). These

objects are texture-less and some of them have shiny surfaces. All images were cap-

tured by industrial USB camera (STC-MC33USB, resolution: 640× 480 pix, OMRON

SENTECH CO., LTD.) with 16mm lens.

4.3.1 Experiment 1: Evaluation of Orientation Features

Experimental settings

In experiment 1, we evaluated four kinds of orientation features on test images of

nine kinds of objects shown in Figure 4.8. The target object in cluttered background

was captured by a monocular camera from the randomized viewpoints described in

Figure 4.2 (the center of viewpoint range was on z = 680 mm and the ranges are

±12 degrees around X/Y axes, ±40 mm in the distance and ±7.5 degrees around
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Figure 4.8 3D CAD of target objects used in experiment 1 and 2. Top: Connector,
SideClamp and Stopper. Middle: L-Holder, T-Holder and Flange. Bottom:
HingeBase, Bracket and PoleClamp. The red (X axis), green (Y axis) and
blue (Z axis) lines represent object coordinate system.

the optical axis). The number of test images per object was approximately 100. An

example image for each object was shown in Figure 4.9.

Our proposed PCOF was compared with three existing orientation features: nor-

malized gradient vector [24], spread orientation [48] and cumulative orientation fea-

ture (COF) [143]. Existing methods used the upper-left image in Figure 4.2 as the

model image.

Results

Similarity scores based on four kinds of orientation features were calculated at every

pixel. The maximum score at the foreground (FG: inside object boundary) and at the

background (BG: outside object boundary) were shown in Table 4.1. The difference

between scores at FG and BG were shown in Table 4.2. This difference represents

how discriminative each feature is against cluttered backgrounds under appearance
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Figure 4.9 Example images used in experiment 1. A target object whose 3D pose is
slightly transformed (less than approximately 10 degrees around X/Y/Z
axes) is captured under background clutters. Nine kinds of texture-less
objects are tested. Top: Connector, SideClamp and Stopper. Middle: L-
Holder, T-Holder and Flange. Bottom: HingeBase, Bracket and PoleClamp.

changes induced by randomized viewpoints. The larger the score difference is, the

more discriminative the feature is.

Discussion

Normalized gradient vector [24] is a unit vector of an image gradient. Though it was

shown that the sum of inner products of normalized gradient vectors was occlusion,

clutter and illumination invariant, this feature does not handle appearance changes

of object itself. Our experimental results showed that FG scores were lower (Table

4.1) than other three features and this demonstrated that normalized gradient vector

was fragile to the changes in 3D object pose. The score differences (FG−BG) of this

feature were also lower than others (Table 4.2) and it was shown that this is the least

discriminative feature in our comparison.
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Table 4.1 The mean values of maximum scores at foreground (FG) and background
(BG) in experiment 1.

Normalized Spreading COF PCOF

FG BG FG BG FG BG FG BG

Connecotor 0.567 0.504 0.614 0.491 0.616 0.492 0.707 0.559

SideClamp 0.535 0.486 0.584 0.469 0.443 0.325 0.547 0.403

Stopper 0.507 0.421 0.581 0.400 0.707 0.360 0.800 0.398

L-Holder 0.610 0.492 0.739 0.479 0.742 0.374 0.874 0.440

T-Holder 0.610 0.470 0.773 0.466 0.751 0.378 0.879 0.480

Flange 0.596 0.510 0.670 0.470 0.732 0.316 0.852 0.406

HingeBase 0.548 0.487 0.658 0.512 0.606 0.466 0.703 0.530

Bracket 0.501 0.442 0.528 0.469 0.702 0.397 0.921 0.578

PoleClamp 0.542 0.468 0.619 0.418 0.719 0.325 0.803 0.386

Mean 0.557 0.475 0.641 0.464 0.669 0.381 0.787 0.464

Spreading orientation [48] was designed to make its similarity score robust to

small shifts and deformations. The quantized orientations of test images are effi-

ciently spread by shifting them over the range of ±4×±4 pixels and merging them

with bitwise OR operations. The model template consists from quantized orienta-

tion (being not spread) and was matched to the input features. In our experimen-

tal results in Table 4.1, FG scores were higher than normalized gradient and it was

shown that spreading of orientationmade its score robust to the changes in 3D object

pose. However, the differences between FG and BG scores were lower than both of

COF and PCOF (Table 4.2) and this indicates that simple spreading operation is in-

sufficient for making the feature robust both to cluttered backgrounds and changes

in 3D object pose.

Cumulative orientation feature (COF) [143] was proposed to make orientation

features robust both to cluttered backgrounds and the appearance changes caused

by the changes in 2D object pose. Following their paper, many training images were

generated by transforming the model image using randomized geometric transfor-

mation parameters (within the range of ±1 pixel in X/Y translations, ±7.5 degrees

of in-plane rotation and ±5 % of scale) and COF was calculated at each pixel by ex-

tracting dominant orientations from the orientation histogram. The model template
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Table 4.2 The mean values of differences between scores at FG and BG in experiment
1. The larger the score difference is, the more discriminative the feature is.

Normalized Spreading 　 COF　 　 PCOF　

Connecotor 0.064 0.122 0.125 0.148

SideClamp 0.049 0.115 0.118 0.144

Stopper 0.087 0.181 0.346 0.402

L-Holder 0.118 0.260 0.368 0.434

T-Holder 0.140 0.307 0.373 0.399

Flange 0.086 0.200 0.416 0.446

HingeBase 0.061 0.146 0.140 0.172

Bracket 0.059 0.059 0.305 0.343

PoleClamp 0.075 0.201 0.393 0.417

Mean 0.082 0.177 0.287 0.323

using COF was matched to the quantized orientations extracted on test images. The

matching results in Table 4.1 and Table 4.2 showed that COF could relax the match-

ing condition when the object pose changes and maintained the robustness to back-

ground clutters. However, the score differences of COF was still lower than those

of PCOF because COF is not designed to make it robust against the changes in 3D

object pose.

Perspectively cumulated orientation feature (PCOF)was calculated as described

in Section 4.2.1 and matched to the quantized orientations extracted on the test im-

ages. The differences between FG and BG scores in Table 4.2 were higher than other

three features and this shows that PCOF is robust both to cluttered backgrounds and

the changes in 3D object pose. Due to this robustness, the template which consist of

PCOF can handle a certain range of 3D object pose (approximately 8 degrees in out-

of-plane rotation angles) without loss of the robustness to cluttered backgrounds.

This advantage enables PCOF templates to handle a wider range of 3D object pose

with fewer number of templates than other image features.
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4.3.2 Experiment 2: Evaluation of 6-DoF Pose Estimation

Experimental settings

In experiment2, we evaluated the accuracy and the speed of our 6-DoF pose esti-

mation algorithm on our texture-less object dataset (Mono-6D dataset). Nine kinds

of texture-less objects (Figure 4.8) were captured from various viewpoints within

the range of ±60 degrees around X/Y axes, ±180 degrees around the optical axis

and 660 mm – 800 mm in distance from the center of the object. Approximately 500

images were taken per object where cluttered backgrounds and partial occlusions

were contained. The ground truth of 6-DoF object pose were estimated based on the

surrounding AR markers printed on the board where the target objects were placed

on. The AR markers were recognized using ArUco library [145]. We counted the

estimated 6-DoF pose as correct if the errors of the result were within 10 mm along

X/Y axes, 40 mm along Z axis, 10 degrees around X/Y axes and 7.5 degrees around

Z axis. The example images of our dataset are shown in Figure 4.10. The estimated

results by our proposed method are drawn on the images.

The existing 6-DoF pose estimation algorithms by Ulrich et al. [47], Hinter-

stoisser et al. (LINE-2D) [48] and Konishi et al. (COF) [143] were also evaluated

on the dataset. We used the function “find_shape_model_3d” in the machine vision

library “HALCON 11” (MVTec Software Gmbh in Germany) as an implementation

of [47], LINE-2D implemented in OpenCV 2.4.11 and the source code of COF which

was provided by the authors. We prepared 2D projection images from the same

viewpoints as PCOF (total of 205 images per object) and used them for the training

of LINE-2D and COF. Regarding our algorithm, the parameters are summarized in

Table 4.3. All the programs were run on a PC (Core i7 3770 3.4GHz and 8GB RAM)

using a single CPU core.

Estimation accuracy

Figure 4.11 shows the curves representing the relation between the success rate of

correctly estimated 6-DoF pose (vertical axis) and false positives per image (FPPI,

horizontal axis). The estimation results with various search thresholds are plotted

on the graphs. Even when the threshold is low and FPPI is high, the success rate
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Figure 4.10 The example images of Mono-6D dataset are presented. The dataset
consists of nine texture-less objects and contains cluttered backgrounds
and partial occlusions. Top: Connector, SideClamp and Stopper. Mid-
dle: L-Holder, T-Holder and Flange. Bottom: HingeBase, Bracket and
PoleClamp. The edges of the objects extracted from 3D CAD (green lines)
and the coordinate axes (three colored arrows) are drawn on the images
based on the estimated 6-DoF pose by our proposed method.

for each object is never close to 1.0. This is because 6-DoF pose estimation requires

not only correct positions but also correct rotation angles around X/Y/Z axes, and

the estimated rotation angles do not depend on the search thresholds. Thus some

false estimation results of object pose are remained when the search threshold is

zero. All the graphs indicate that our proposed method achieves higher accuracy in

comparison with other existing methods.

As shown in experiment 1 (Section 4.3.1), COF and spread orientation of LINE-

2D are not robust to the appearance changes caused by the out-of-plane rotations

of the object. The numbers of viewpoints for making model templates are same in

COF, LINE-2D and PCOF. Thus the differences in the success rate between these

three methods are mainly due to the different image features.



4.3. Experimental Evaluation 73

Table 4.3 The parameters used in Experiment 2. The number of generated images
(N ) and threshold of orientation histograms (Th) for PCOF extraction. The
intervals, ranges and number of templates for rotations (X/Y and Z) and
distances to the camera in template generation.

N Th X/Y rot. (deg) Z rot. (deg) distance (mm)

1000 120 8◦ in ±60◦ (205) 5◦ in ±180◦ (72) 30 in 660− 800 (5)

In the algorithm of Ulrich et al. [47], the templates using normalized gradi-

ent vectors of Steger et al. [24] are made at the viewpoints sampled more densely

than other three methods. Then the viewpoints are clustered based on the similar-

ity scores between the templates. Thus the viewpoint sphere is divided into some

aspects which are optimized for a single template to keep its similarity score higher

than a certain threshold. This viewpoint sampling is better than the regularly spaced

sampling as in COF and LINE-2D, and the success rate of Ulrich et al. is higher than

those of COF and LINE-2D. However, a single template represented each aspect

(clustered viewpoint) and the similarity score should be degraded at the edges of

the aspect. This is because our method surpass Ulrich et al. in the success rate of

correctly estimated 6-DoF object pose.

PCOF is calculated using many synthetic images from randomized viewpoints

while other existing features are calculated only at a single viewpoint (a vertex of

geodesic sphere). Therefore PCOF is especially effective in the situation where the

appearance of an object drastically changes only by small movements of a view-

point. This is often the case with the objects with irregular/uneven shapes such

as HingeBase, Bracket, SideClamp and Stopper in our dataset (Figure 4.8). PCOF

showed large advantages over existing method regarding these three objects other

than HingeBase (in Figure 4.11).

The reason why the advantage of PCOF is small for HingeBase is that it has shiny

surface and leads to many false matchings due to the reflection of ambient light and

background clutters. This demonstrates that the material of object surface as well as

the shape of object has large influence on the performance of pose estimation.
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Figure 4.11 The graphs showing the relation between the success rate of correctly esti-
mated 6-DoF pose (vertical axis) and false positives per image (FPPI, hor-
izontal axis) are presented. There are nine graphs for each object in the
dataset and the curves by four methods (Ulrich et al. [47], LINE-2D [48],
COF [143] and PCOF (ours)) are drawn on each graph.

Processing time

The processing times (ms) for 6-DoF pose estimation when FPPI is 0.5 are shown in

Table 4.4. Our proposed method achieved faster speed compared with the existing

methods. PCOF and COF [143] use the same similarity scores calculated by bitwise

ADD operations of binary features, and the main difference between them influenc-

ing the processing time is their search data structures. In COF the 2D object pose

is estimated at each viewpoint independently, and the search strategy is optimized

only in 2D pose space and not in 3D pose space. This is why the speed of COF was

slower by approximately ten times than PCOF. The data structure of model tem-

plates in LINE-2D [48] is also not efficient for search in 3D pose space. However,
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Table 4.4 The processing times (ms) for 6-DoF pose estimation in experiment 2 when
FPPI is 0.5 are presented. The mean value is also shown at the bottom row.

Ulrich LINE-2D COF PCOF

Connector 964.1 375.8 1258.5 167.1

SideClamp 2724.4 383.2 1387.5 220.4

Stopper 2703.0 345.7 1149.9 129.9

L-Holder 963.8 357.1 1015.8 122.6

T-Holder 912.2 376.3 1140.1 137.5

Flange 973.0 390.5 1238.1 137.4

HingeBase 1137.1 348.9 1124.6 226.1

Bracket 792.4 358.5 961.4 127.1

PoleClamp 1439.0 375.9 1320.1 137.4

Mean 1401.0 368.0 1177.3 156.2

Table 4.5 Recognition rate (FPPI = 0.5) and processing time (ms) for L-Holder with
and without HPT.

recognition rate processing time

with HPT 0.942 122.6

without HPT 0.977 126727.7

the similarity score of LINE-2D is calculated just by summing up the precomputed

response maps where the memory is linearized for reducing a cache miss, and this

is much faster than the computation of scores based on bitwise operations. Thus

LINE-2D is much faster than COF.

Ulrich et al. [47] uses the normalized gradient vectors [24] which is not robust

to the changes in 3D object pose, and their method requires more templates than

PCOF in order to handle the same range of 3D object pose. Add to this, their search

model is constructed by merging the neighboring viewpoints, and this is not fully

efficient in the case that 2D views from separate viewpoints are similar, as is often

the case with texture-less objects. Their similarity score which is based on floating-

point arithmetic possibly lead to slower matching of templates. From these reasons,

6-DoF pose estimation of Ulrich et al. is slower by five to ten times than PCOF.

We have also tested how large HPT contributed to our efficient search in 6-DoF
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pose space. Table 4.5 shows the recognition rate (FPPI = 0.5) and processing time

(ms) for recognizing 6-DoF pose of T-Holder when all 73,800 PCOF templates were

scanned without using HPT. This result demonstrates that HPT boosted the search

speed by more than 1,000 times, while at the same time the recognition rate was

decreased by 3.5 %. The reason for this degradation was that some of correct can-

didates for 6-DoF pose were discarded at higher levels (lower image resolutions) of

the image pyramid. Though the recognition rate with HPT will be increased if lower

score thresholds are used at the higher levels, the speed will be slower because more

candidates should be matched with the model templates at the lower levels. There is

a trade-off between speed and score threshold, as is often the case with hierarchical

search algorithms.

Our proposed algorithm takes approximately 3 minutes for the training while

the other three existing methods takes 10 seconds or so. This is because our method

render a thousand of depth images at each viewpoint while the existing methods

use one depth/gray image per viewpoint. Although ours takes longer time than

existing methods, 3 minutes for training is quick enough for the on-site training in

real applications.

Estimation error

Mean absolute errors of estimated 3D positions along X/Y/Z axes in mm for Ulrich

and our proposed algorithm on Mono-6D dataset are shown in Table 4.6 and errors

of estimated rotation angles around X/Y/Z axes in degrees are shown in Table 4.7.

These errors are averaged only among the successful results using the threshold

values of 10 mm along X/Y axes, 40 mm along Z axis, 10 degrees around X/Y axes

and 7.5 degrees around Z axis, and the numbers of samples in Ulrich et al. and PCOF

for computation of mean errors are different.

The errors of Ulrich et al. and our algorithm are almost the same both for transla-

tions and rotations. This is because the estimation errors depend on the registration

algorithm and both Ulrich et al. and ours use the least square minimization of 2D-3D

point correspondences for 6-DoF pose refinement.

The errors along Z axis are larger approximately by ten times than those along

X/Y axes. This is because the projected distance along X/Y axes on the image plane
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Table 4.6 Mean absolute errors of estimated positions along X/Y/Z axes in mm for
Ulrich et al. and our algorithm (PCOF) on Mono-6D dataset.

Ulrich et al. Ours

tra X tra Y tra Z tra X tra Y tra Z

Connector 1.120 1.120 10.936 0.978 1.038 8.679

SideClamp 1.090 1.047 13.042 0.939 0.918 9.890

Stopper 1.170 1.121 13.854 1.137 0.999 13.107

L-Holder 0.920 0.881 10.655 0.836 0.794 11.050

T-Holder 1.071 0.857 14.251 0.913 0.795 12.645

Flange 0.891 0.842 13.675 0.684 0.623 13.743

HingeBase 1.212 1.050 9.220 1.155 1.001 11.567

Bracket 1.151 1.074 9.617 1.127 1.007 10.553

PoleClamp 1.127 1.037 12.229 1.029 0.901 12.128

Mean 1.083 1.003 11.942 0.978 0.898 11.485

are much smaller than the distance along Z axis. For example, the focal length of

our camera in Experiment 2 is 2210 (f = 2210) and the working distance is 680 mm

(Z = 680). The projected 2D point on the image plane (x, y) of a 3D point (X,Y, Z)

is calculated using the pinhole camera model:

x = fX
Z

y = fY
Z . (4.5)

In our case, the translation of 1 mm along X/Y axes is equal to 3.25 pixels on the

image. Contrastingly, the translation of 1 mm along Z axis at X = 50 mm (average

size of the target objects in Experiment 2) is equal to 0.24 pixels on the image. For this

reason, it is so hard to estimate precise 3D position along Z axis from the found 2D

positions at the image coordinate system. For similar reasons, the errors of rotation

angles around X/Y axes (of-the-plane rotations) are larger than those around Z axis

(in-plane rotations).

Due to these errors (especially translation error along Z axis) of estimated pose,
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Table 4.7 Mean absolute errors of estimated rotation angles around X/Y/Z axes in
degrees for Ulrich et al. and our algorithm (PCOF) on Mono-6D dataset.

Ulrich et al. Ours

rot X rot Y rot Z rot X rot Y rot Z

Connector 3.039 2.526 1.550 2.921 2.327 1.483

SideClamp 2.663 1.971 1.620 2.957 2.073 1.732

Stopper 2.676 2.263 1.692 2.832 2.548 1.941

L-Holder 2.443 2.038 1.297 2.553 2.139 1.299

T-Holder 2.672 2.568 1.398 2.669 2.244 1.284

Flange 2.977 2.372 2.160 2.610 2.211 1.979

HingeBase 2.564 2.177 1.367 2.769 2.510 1.569

Bracket 2.551 2.096 1.258 2.702 2.283 1.452

PoleClamp 2.495 2.404 1.431 2.937 2.511 1.740

Mean 2.675 2.268 1.530 2.772 2.316 1.609

the application of 6-DoF pose estimation from a monocular image is somewhat lim-

ited. For example, augmented reality where the estimated pose is used for display-

ing some information and robotic grasping using vacuum grippers where position-

ing errors are allowed to some extent.

Sampling interval of viewpoints on geodesic sphere

Sampling interval of viewpoints on geodesic sphere has large influence on our pose

estimation performance. When the viewpoints are sampled sparsely, the number of

templates for 6-DoF pose recognition reduced and the processing time is shortened.

At the same time, PCOF template should cover wider range of 3D object pose be-

cause the distances between neighboring viewpoints become longer. PCOF which

is made from wider range of 3D object pose becomes less discriminative and fragile

to background clutters because it includes more orientations as its features. Con-

trastingly, dense sampling of viewpoints leads to slower search speed due to the

increased number of templates and more discriminative PCOF which is made from

narrower range of 3D object pose.

We tested 6-DoF pose estimation of L-Holder when the sampling interval is dou-

bled and halved. The range of 3D object pose when generating training images for
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Table 4.8 Recognition rate (FPPI = 0.5) and processing time (ms) for L-Holder using
three different numbers of viewpoints.

num. of views (sampling int.) recognition rate processing time

54 (approx. 15 deg) 0.803 76.7

205 (approx. 8 deg) 0.942 122.6

835 (approx. 4 deg) 0.963 151.2

PCOF was adjusted based on the sampling interval of viewpoints. The recognition

rate and the processing time (ms) are shown in Table 4.8. This table shows the trade-

off between sampling intervals and recognition performance, that is to say, denser

sampling of viewpoints (from first to third row in the table) leads to higher recogni-

tion rate and longer processing time.

Number of templates used for matching

The reason why our proposed method uses fewer number of templates is twofold.

One is that PCOF can handle a certain range of 3D object pose. Another is that HPT

clusters templates based solely on the similarities between templates. The numbers

of templates of L-Holder trained at each level by Ulrich’s pose tree (clustering of

templates from neighboring viewpoints) with Steger’s image feature (normalized

gradient vector), HPT with Steger, and HPT with PCOF are shown in Table 4.9. The

table demonstrates that HPT reduces the number of templates at higher levels (lower

image resolution) because more templates become similar due to the lower resolu-

tion. It is also shown in the table that reduced number of templates at lower levels

(higher image resolution) is mainly due to PCOF which has wider coverage of 3D

object pose and the neighboring templates tend to be more similar compared to the

templates of normalized gradient vector (Steger’s).

4.3.3 Handling of Perspective Distortion

The optical axis of the virtual camera always go through the origin of object coordi-

nate when the projection images are synthesized for extraction of PCOF. This means

that the target objects are always drawn at the centers of images in training and

PCOF is not extracted from the appearances of the objects at the corners of images.
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Table 4.9 The number of viewpoints and number of templates of L-Holder at each
level of image pyramids.

num. of views level 1 level 2 level 3

Ulrich with Steger 73,800 39,835 8,937 1,024

HPT with Steger 73,800 39,245 8,010 435

HPT with PCOF 73,800 23,115 4,269 233

680 mm 340 mm 170 mm

center

upper left

Figure 4.12 2D projection images of L-Holder which are rendered at the center (up-
per row) and the upper left (lower row) of the images from 3 different
distances (left: 680 mm, center: 340 mm, right: 170 mm) are presented.

Therefore, PCOF might not be able to estimate object pose correctly when the ob-

jects are perspectively distorted at the corners of images. In order to test how large

influence the perspective distortion has on the performance of 6-DoF object pose es-

timation, the projection images of L-Holder which are rendered at the center and the

upper left of the images from 3 different distances (680 mm, 340 mm, and 170 mm)

are shown in Figure 4.12.

The distance between the camera and the target object was 680 mm in our ex-

perimental settings. In this case the appearances of the objects at the center and at

the upper left are almost the same (left column of Figure 4.12). The projected object

from half distance (340 mm) is slightly distorted at the upper left corner of the image

(center column of Figure 4.12) and from the shorter distance (170 mm) the object is
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Figure 4.13 Example images of 6-DoF pose estimation results when the objects are
around the corners of images.

extremely distorted (right column of Figure 4.12). This shows that PCOF cannot rec-

ognize target objects at corners of images due to perspective distortions when they

are captured from close range using a lens with a short focal length. In our exper-

imental setting (16 mm lens and working distance is 680 mm), the distortion can

be ignored and PCOF can recognize 6-DoF object pose correctly as shown in Figure

4.13.

When the working distance is short (e.g. 170 mm using 4 mm lens), our pro-

posed method can handle perspective distortions by building HPT based on PCOF

templates at each local area of an image. Though this uses more memory for storing

model data, the estimation speed is not degraded at all.

4.3.4 Failure Cases

Typical examples of our failure cases in Experiment 2 are presented in Figure 4.14.

These failures are mainly due to the following reasons.

Partial occlusion

Our proposed algorithm sometimes fails to estimate 6-DoF pose of occluded objects

(1st row of Figure 4.14). We use the orientation of gradients as a feature for matching

and clear gradients are often observed around the outline of the objects. Therefore,

the occlusions of object outlines significantly degrades the estimation accuracy of

our algorithm.
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Figure 4.14 Example images of the failure cases of our proposed method. 1st row:
Stopper, T-Holder and HingeBase were not recognized due to partial oc-
clusions. 2nd row: There were false positives of SideClamp, T-Holder and
Flange due to background clutters. 3rd row: The 3D pose of AirNozzle,
FluoroConnector and UrethaneTube were erroneously estimated due to
less-visible edges. 4th row: 3D pose estimation of Connector, Bracket and
PoleClamp were failed due to partial correspondences. The target objects
in 3rd row are from an additional experiment and others are from Mono-
6D dataset.
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Background clutter

The examples of wrong matches in background are shown in 2nd row of Figure

4.14. SideClamp, L-Holder and Flange in Mono-6D dataset are fitted to other objects

in background. The clear image gradients are usually extracted around object’s out-

lines and the false matches are prone to occur when there is a shape in background

which is similar to the outlines of the target object from any viewpoints. Moreover,

metallic objects in background produce many false edges and gradients, which eas-

ily output more false positives as shown in the example of Flange (right of 2nd row).

Less-visible edges

As described above, the gradient orientation features extracted from the outlines of

objects are crucial for our pose estimation algorithm. However, the image gradi-

ents around the ridges and corners of the objects are also important for determining

3D pose. These edges and gradients are sometimes less-visible and this often pro-

duces false pose matching as shown in 3rd row of Figure 4.14. The typical objects are

ones with dark color (AirNozzle) and translucent objects (FluoroConnector and Ure-

thaneTube). Additional lighting might make these ridges and corners more clearly

visible and possibly alleviate this problem.

Partial correspondence

Though the last case is similar to the previous one, the edges and gradients of the

objects are visible (4th row of Figure 4.14). These failures are due to the similar

appearances between wrong 3D pose and input object. To overcome this failure,

the classifier which is trained so that it can discriminate small differences of the

appearances would be a good solution. After the rough position of the target object

is detected by our template based algorithm, the pose classifier (or regressor) which

is specifically trained to estimate 3D pose of the object is applied to the detected

area. The pose classifier can be prepared and applied only for the ambiguous poses

in order to prevent pose estimation from becoming slower for real applications.
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4.4 Conclusion

In this chapter, we proposed PCOF and HPT for template based 6-DoF pose es-

timation of texture-less objects from a monocular image. PCOF is extracted from

randomly generated 2D projection images using 3D CAD to explicitly handle a cer-

tain range of 3D object pose. HPT is built by clustering 3D object pose based solely

on the similarities between 2D views and reducing the resolutions of PCOF features

to accelerate 6-DoF pose estimation using a coarse-to-fine search. The experimen-

tal evaluation demonstrated that PCOF was robust both to cluttered backgrounds

and the appearance changes caused by the changes in 3D object pose. Another ex-

perimental result showed that our 6-DoF pose estimation algorithm based on PCOF

and HPT achieved higher success rate of correctly estimated 6-DoF pose and faster

speed in comparison with state-of-the-art methods on our Mono-6D dataset. Our

model training requires only 3D CAD of target objects and takes 3 minutes, this is

desirable for on-site training in real applications. However, the application is some-

what limited due to the estimation error of 1 cm in Z translation and the sensitivity to

the occlusion of object outlines, the lighting conditions and the background clutters.
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Chapter 5

3D Object Detection and Pose

Estimation from a RGB-D Image

In this chapter, we introduce fast and accurate algorithm for estimation of 3D object

position and pose (6-DoF pose) from a RGB-D image. As with the algorithm for 6-

DoF pose estimation from a monocular image introduced in Chapter 4, we employ

template matching based algorithm in order to handle texture-less/simple-shaped

objects those are often seen in real applications. The model training requires only

a 3D CAD of a target object and takes a few minutes, which is suited for on-site

training.

Our proposed method consists mainly of three technical elements: Multimodal

Perspectively CumulatedOrientation Feature (PCOF-MOD), Balanced Pose Tree (BPT)

and optimal memory rearrangement for a coarse-to-fine search. PCOF-MOD and

BPT are developed and modified based on PCOF (described in Subsection 4.2.1) and

HPT (described in Subsection 4.2.2) in order to make them applicable and optimum

to RGB-D images. Another idea of making a coarse-to-fine search faster using SIMD

instructions is introduced in this chapter.

The remaining contents of this chapter are organized as follows: Section 5.1

presents the existing work regarding our proposed method. After explaining three

technical elements and whole pipeline of our proposed method in Section 5.2, Sec-

tion 5.3 shows the experimental results both in tabletop and bin-picking sceneswhich

simulate manipulation tasks of service and industrial robots. Section 5.4 concludes

this chapter.
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5.1 Related Work

In this section, the existing researches which are closely related to our proposed

PCOF-MOD, HPT and optimum memory rearrangement. Firstly, PCOF-MOD is

developed from PCOF which was presented in Subsection 4.2.1 as an image feature

which was extracted from randomly generated 2D projection images using 3D CAD

to explicitly handle a certain range of 3D object pose. This idea is also useful for

RGB-D images and some depth features should be added. Hinterstoisser et al. [58]

have proposed the binary featurewhich represented discretized normal orientations.

This feature represents the shapes of object surfaces and complements the gradient

orientation which represents the object contours. We add this discretized normal

orientations to PCOF by constructing the orientation histogram at each pixel using

randomly transformed and synthesized depth images.

Secondly, BPT is modified from HPT which was presented in Subsection 4.2.2

as an efficient tree-based template data structure which was built by pose cluster-

ing based solely on 2D view similarity. However, the number of child nodes in

HPT sometimes becomes large because a simple-shaped object has many similar 2D

views, and this lead to slower computation. Moreover, adding depth features make

the template more discriminative among object 3D poses. For those reasons, reg-

ularly sampled viewpoints where the numbers of child nodes of all parent nodes

are almost the same (balanced tree) are more efficient for matching of PCOF-MOD

templates than the clustered viewpoints.

Lastly, the optimum memory rearrangement for coarse-to-fine search is inspired

by the following existing researches. Hinterstoisser et al. [48] have proposed LINE

where the response map for every discretized orientation was precomputed and the

similarity score was quickly calculated just by summing up the orientation response

using the look-up tables. They also restructured the response maps into linearized

vectors for further speed up. Cao et al. [62] have presented the efficient template

matching on GPU, in which the model templates and an input image were concate-

nated and vectorized respectively. We apply these image restructuring to a coarse-

to-fine search [12] which is often used for making template matching faster. In a

coarse-to-fine search, the promising results which are detected at the higher levels
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of image pyramid are further scanned at the lower levels only around the detected

positions. We rearrange that these nearby features (e.g. within 2-by-2 pixels) are

linearly aligned and accessed using SIMD instructions.

5.2 Proposed Method

This section introduces our proposed methods for 3D object detection and pose es-

timation or 6-DoF object pose estimation. Our proposed method consists of three

components: PCOF-MOD, balanced pose tree and optimal memory rearrangement.

We explain them in the following three subsections and the whole pipeline including

the refinement of 6-DoF object pose in the last subsection.

5.2.1 PCOF-MOD:Multimodal Perspectively CumulatedOrientation Fea-

ture for RGB-D image

We modified PCOF (Perspectively Cumulated Orientation Feature) which is intro-

duced in Subsection 4.2.1 to make it applicable to RGB-D images. PCOF is based

on the orientation of gradients extracted from RGB images and it represents the

shapes of object contours. We added the orientation of surface normals extracted

from depth images which represents the shapes of object surfaces. We combined

these two orientation features for accurate and robust 6-DoF object pose estimation

and named it PCOF-MOD (multiMODal Perspectively Cumulated Orientation Fea-

ture).

We describe the details of PCOF-MODusing CADof iron (Figure 5.1(a)) in ACCV-

3D dataset (Subsection 5.3.1) as an example. Firstly, depth images are rendered from

randomized viewpoints sampled on the spheres whose coordinate axes are aligned

with those of target objects. Four parameters which determine the viewpoints (rota-

tion angles around X, Y, optical axes, distance from the object) are generated using

uniformly random number in a certain range. This range of randomization should

be small enough for a single model template at a viewpoint can represent the dis-

tribution of features. In our research, we experimentally determined the ranges and

they are ±10 degrees around X/Y axes, ±7.5 degrees around optical axis and ±90

mm from objects. Internal camera parameters for rendering depth images should
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(a)

(b)

Figure 5.1 (a) 3D CAD of iron, its coordinate axes and a sphere for viewpoint sam-
pling. (b) Examples of depth images from randomized viewpoints around
a certain vertex.

be same ones of the RGB-D sensor used for pose estimation. Some of the depth im-

ages rendered using randomized viewpoints (the center of the range is at 33.9 deg

around X axis, 25.5 deg around Y axis 0 deg around optical axis and 900 mm from

the object) are shown in Figure 5.1(b). The upper left image is rendered at the center

of the randomization range.

Secondly, gradients vectors and normal vectors are extracted from the rendered

N depth images. The gradient vectors are computed only around object contours

using Sobel filter and the normal vectors are computed by fitting planes to nearby

pixels [58]. The colored gradients and normal vector orientations extracted from the

upper left image in Figure 5.1(b) are shown in Figure 5.2(a) and (c).

Thirdly, the distributions of the gradient and normal orientations are computed
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(a) (b) (c) (d)

Figure 5.2 (a) Colored gradient orientations. (b) Quantization of gradient orientations.
(c) Colored normal orientations. (d) Quantization of normal orientations.

at each pixel. The gradient and normal vector orientations are quantized into eight

orientations (Figure 5.2(b) and (d)) and weights are added to corresponding bins.

The weights are linearly interpolated between neighboring bins and added to them,

for example the weights are added to bin 5 and 6 in Figure 5.2(b) and (d). When

there is no depth value, no weight is added to the histogram at the pixel. Then two

histograms are obtained per pixel whose maximum frequencies are N .

Lastly, we select dominant orientations whose frequencies are larger than a cer-

tain threshold (Th) and extract 8 bit binary digits where the bit of the dominant

orientations are 1 and others are 0. The frequency values of the maximum bin are

also extracted and used as the weighting factors for calculating similarity scores be-

cause the features with higher frequencies are more stably observed andmore robust

against the changes of object pose. The histogramswithout the dominant orientation

are not used for matching.

Four examples of histograms, quantized orientation features (ori) and weights

(w) are shown in Figure 5.3. These are calculated from the depth images shown

in Figure 5.1(b). The pixel A and B are selected from the gradient orientation im-

age and the pixel C and D are from the normal orientation image. The number of

generated depth images (N ) and the threshold for frequencies (Th) were experimen-

tally determined, we used N = 1000 and Th = 100 for the gradient orientation and

N = 1000 and Th = 200 for the normal orientation. Regarding the gradient ori-

entations, the votes are distributed to many bins (orientations) and the dominant

orientations are not obtained on the corners of objects like pixel A. Contrastingly,

the votes are concentrated on a few bins and the dominant orientations with large

weights are obtained on the smooth contours of objects like pixel B. Similarly on the
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Figure 5.3 Examples of the orientation histograms, binary features (ori) and their
weights (w) on arbitrarily selected pixels. Pixel A and B are extracted from
gradient orientations, and pixel C and D are from normal orientations. Red
dotted lines show the threshold for feature extraction

normal orientations, the orientations with smaller weights are extracted on the cor-

ner shapes like pixel C and the orientations with larger weights are extracted on the

smooth surface like pixel D.

A PCOF template (T ) consists of n quantized orientations (orii) and weights (wi)

of pixels (xi and yi) whose weights are larger than zero:

T : {xi, yi, orii, wi|i = 1, ..., n} . (5.1)

A similarity score at pixel (x, y) is calculated by following equations:

score(x, y) =

∑n
i=1 δk(ori

I
(x+xi,y+yi)

∈ oriTi )∑n
i=1wi

. (5.2)

The weights are added to the score when any of the orientations of an input image

are included in the orientations of model template. The delta function in Equation
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depth 0 depth 1 depth 2 depth 3

Figure 5.4 Icosahedron (left) and almost regular polyhedrons those are generated by
recursive decompositions.

5.2 can be computed efficiently utilizing bitwise AND (∧).

δi(ori
I ∈ oriT ) =


wi if oriI ∧ oriT > 0,

0 otherwise.
(5.3)

The PCOF templates for both gradient orientations and normal orientation are made

and stored when training. When testing, the similarity scores are computed sepa-

rately and the sum of two scores are used for pose estimation.

5.2.2 BPT: Balanced Pose Tree

The PCOF template described in previous subsection is robust to small change in

object 3D pose, e.g. within ±10 degrees around X/Y axes, ±7.5 degrees around

optical axis and ±90 mm of the distance to an object in our research. To cover full

3D object pose, PCOF templates are made at the viewpoints which are regularly

sampled on the sphere (Figure 5.1 (a)). These viewpoints are the vertices of an almost

regular polyhedron and are made by recursively decomposing an icosahedron [146].

Figure 5.4 shows this procedure where new vertices are made by dividing edges in

half. It starts from the icosahedron (20 faces) shown in leftmost of Figure 5.4 and the

polyhedrons with 80 faces, 320 faces and 1280 faces are obtained in sequence. The

number of vertices (viewpoints) are 12, 42, 162 and 642 respectively.

We used the 1280 faced polyhedrons (642 vertices) for sampling viewpoints of

PCOF templates because the angles between neighboring viewpoints are approxi-

mately 8 degrees around X/Y axes and one PCOF template (±10 degrees) can fully

cover this range. PCOF templates are also made at 70 mm intervals in distance to an
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Algorithm 2 Building balanced pose tree

Input: Orientation histograms Hgd, Hnd, and balanced pose trees BPT with depth
d

Output: Templates Tgi, Tni (i = 0, ..., d− 1)
for i← d− 1 to 0 do
Pi ← parent viewpoints of ith level in BPT
for each parent viewpoint Pi,j do
Ci+1,j ← child viewpoints of Pi,j

Hg′i+1,j ← add histograms of child viewpoints Hgi+1 ∈ Ci+1,j at each pixel
Hn′

i+1,j ← add histograms of chile viewpoints Hni+1 ∈ Ci+1,j at each pixel
Hg

′′
i+1,j ← normalize histograms Hg′i+1,j

Hn
′′
i+1,j ← normalize histograms Hn′

i+1,j

Hgi,j ← add histograms of nearby 2× 2 px of Hg
′′
i+1,j

Hni,j ← add histograms of nearby 2× 2 px of Hn
′′
i+1,j

Hg′i,j ← normalize histograms Hgi,j
Hn′

i,j ← normalize histograms Hni,j

Tgi,j ← thresholding Hg′i,j and extracting new binary features and weights
Tni,j ← thresholdingHn′

i,j and extracting new binary features and weights
end for

end for

object and 6 degrees intervals around an optical axis so that a PCOF template (±90

mm and ±7.5 degrees) can fully cover these intervals.

We integrate all these PCOF templates into balanced pose tree (BPT) which con-

sists of hierarchical templates with different resolutions and viewpoint intervals. It is

well known that the coarse-to-fine search on image pyramids using hierarchical tem-

plates boosts object detection and pose estimation [17, 141]. We combine it with the

coarse-to-fine sampling of viewpoints based on the hierarchical polyhedrons (Figure

5.4) because rough 3D pose estimation is enough for coarse image resolutions. This

reduces the number of templates to be scanned at the coarse image layers and make

pose estimation more efficient.

Our BPT consists of four layers (depth 0, 1, 2, 3) and the viewpoint sampling

becomes denser at the deeper layer. We use the vertices of icosahedron shown in

the left of Figure 5.4 as the root nodes of BPT and link each root node to its nearest

vertices of depth 1 (80 faced polyhedron). Each parent node has three or four child

nodes and this procedure is iterated from depth 1 to depth 2 and from depth 2 to

depth 3. We also decrease the intervals by half for the rotation angles around optical

axis and the distance to the object. Therefore, our BPT is B-tree of depth 3 where

each parent node has 12 or 16 child nodes.
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Each node of BPT consists both of the gradient and normal orientation templates.

We have already described the way how to create the gradient orientation template

(Tg3) and the normal orientation template (Tn3) at depth 3 in Subsection 5.2.1. The

model templates at depth 2 and the upper levels are made using the templates of

one level lower and the algorithm is shown in Algorithm 2. Firstly, the gradient

and normal histograms (Hgi+1 andHni+1) of the child nodes (Ci+1) which has same

parent node (Pi) are added and normalized at each pixel. The number of child nodes

are 12 or 16 and their 3D pose (including the angles around optical axis and the

distance to the object) are slightly different. The added histograms represent wider

distribution of orientation which should be handled by the parent node. Secondly,

the resolution of the added histograms (Hg
′′
i+1,j and Hn

′′
i+1,j) are reduced to half by

adding and normalizing the histograms of nearby 2 × 2 pixels. Lastly, the binary

gradient and normal orientation features and weights of the templates (Tgi,j and

Tni,j) are extracted by thresholding the histograms. These procedures are iterated to

depth 0 and we obtain the hierarchical templates whose resolutions of image space

and 3D object pose are simultaneously reduced from the top to bottom level.

Part of BPT of iron are shown in Figure 5.5. This example does not include the

templates of different rotation angles around optical axis and distance to objects,

and a parent node has three or four child nodes. When model is trained, PCOF-

MOD templates at depth 3 are created and then the templates whose 3D poses are

similar are integrated into the templates at one level upper by adding and downsiz-

ing the orientation histograms (see Algorithm 2). In case of iron of ACCV-3D dataset

(Experiment 1 in Subsection 5.3.1), the 3D object pose falls in the range of ±90 de-

grees around X/Y axes, ±45 degrees around optical axis and 650mm − 1150mm of

distance to object. The numbers of viewpoints on hemisphere are 6, 21, 81, 321 at

depth 0, 1, 2, 3. The numbers of rotation angles around optical axis are 2, 4, 8, 16

and distances to object are 1, 2, 4, 8. The numbers of templates at each depth are

calculated by multiplying these numbers and amount to 12, 168, 2592, 41088.
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Figure 5.5 Part of the balanced pose tree of the iron are shown. The bottom tem-
plates are originally created PCOF-MOD templates and the tree structures
are built in a bottom-up way by adding and downscaling of orientation
histograms. In the estimation of object pose, the tree is traced from top to
bottom along the red arrow

5.2.3 Pose Estimation and Refinement

In pose estimation, firstly, the image pyramids of RGB-D input are made. The quan-

tized gradient orientations are computed at each level of RGB image and the quan-

tized normal orientations are computed at each level of depth image. Secondly, the

gradient and normal orientation template of the root nodes are scanned andmatched

against the top level of the gradient and normal orientation pyramids. The similar-

ity scores of the gradients and the normals are computed using Equation 5.2 and

the results whose sum of the scores are larger than a certain threshold are selected

as the promising results. These results (pose and position) are further searched at

the lower levels of the pyramids using the templates at the lower depth. At the bot-

tom of the pyramids, the detected positions on the image and their 3D pose of the

matched templates are obtained. Multiple results whose positions are contiguous

are clustered and the results with non-maximum scores are suppressed. Lastly, the

correspondences between the 2D points on the image and the 3D points on CAD are

obtained and 6-DoF object pose is retrieved by solving PnP problem [64].
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The obtained 6-DoF pose is not optimum because the 3D pose of the templates

are spatially discretized. We refine the pose using ICP algorithm [147]. Model point

clouds extracted from CAD are transformed using the initial 6-DoF pose parameters

obtained by template matching and the corresponding points are searched in the in-

put point clouds by normal shooting [148]. Then the point-to-plane metric (Equation

5.4) is minimized by linearizing the problem (assuming the rotation updates are so

small that sin(θ) ≈ θ and cos(θ) ≈ 1) [149].

Mopt = argminM
∑
i

((M · si − di) · ni)
2 (5.4)

whereM andMopt are 4×4 3D rigid transformation matrices, si is model point, di is

the corresponding input point and ni is the unit normal vector at di. This procedure

is iterated until the rotation updates are negligibly small.

5.2.4 Optimal Memory Rearrangement for a Coarse-to-Fine Search

Our pose estimation algorithm uses two kinds of binary features, one is quantized

gradient orientations extracted from RGB image and another is quantized normal

orientations extracted from depth image. The upper images of Figure 5.6 show the

part of features extracted from 10-by-10 pixel size images. The numbers indicate the

memory address which start at the top-left of the images.

When the template is scanned and matched exhaustively on the top of the image

pyramid, the calculation of similarity scores is easily accelerated by using SIMD

instructions. In case of Intel AVX intrinsics, 256 bit register is available and 32 model

features (8 bit) are matched against the input features by one instruction (logical

AND in Equation 5.3).

However, on the lower levels of the pyramid, the templates are searched only

around the promising areas selected by the matching results of one level upper. On

the image pyramids where the size of the lower image is increased to double, the

templates are searched in 2-by-2 pixels, for example ’0’, ’1’, ’10’, ’11’ in Figure 5.6. In

this case, the features to be matched against the templates are not linearly aligned

and applying SIMD instructions is not efficient. We propose the algorithm which

rearranges nearby features in a rectangular grid into a linearly aligned form and the
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Figure 5.6 Our memory rearrangement strategy which enables highly efficient coarse-
to-fine search. The upper two figures show the gradient orientation features
(green) and normal orientation features (blue). The numbers indicate the
memory address. These two features are mixed and re-arranged so that
every 4 by 4 grid of these features are aligned (the lower figure).

template matching is done highly efficiently on the rearranged feature map using

SIMD instructions.

In our research two kinds of 8 bit features are used and 32 features are processed

at one time using Intel AVX instructions. In order to make full use of this, we rear-

range these two kinds of features in 4-by-4 pixels into linearly aligned 32 features

(the lower image in Figure 5.6). When there is promising results in 2-by-2 pixels at

the upper level of the pyramids, the corresponding 4-by-4 pixels at the lower level

are searched and any 4-by-4 features on the rearranged feature map can be accessed

in a linearly aligned form.

Our proposed feature rearrangement for an efficient coarse-to-fine search can be

applied to any length binary or floating-point features. We should note that the

rearranged feature map consumes more memory footprint by 4 times than original

input features.
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5.3 Experimental Evaluation

We evaluated our proposed algorithm and compared it with state-of-the-art meth-

ods in different two scenes. One was tabletop scene which simulated the manip-

ulation tasks of service robots in housing space (Experiment 1). Another was bin

picking scene which simulated the manipulation task of industrial robots in facto-

ries (Experiment 2). In the last subsection, we summarize and discuss the failure

cases in these two experiments.

5.3.1 Experiment 1: Evaluation on Public RGB-DDataset in Tabletop Scenes

Experimental setting

In Experiment 1, ICVL dataset [119] (we used corrected annotation [115]) andACCV-

3D dataset [59] which were publicly available RGB-D dataset were used for the eval-

uation in tabletop scenes. ICVL dataset consists of 6 kinds of target objects and they

have more than 500 RGB-D images per object those were captured by Carmine 1.09

(Primesense). ACCV-3D dataset consists of 15 kinds of target objects and they have

more than 1000 RGB-D images per object those were captured by PSDK 5.0 (Prime-

sense). Both of them provide CAD data of the target objects and the ground truth

of 6-DoF object pose which were estimated using ARmarkers. Regarding ACCV-3D

dataset, we evaluated 13 objects whose CAD are provided. Examples of depth im-

ages and RGB images of ICVL dataset are shown in Figure 5.7 and those of ACCV-3D

dataset are shown in Figure 5.8.

The pose of objects in both dataset ranges from -90 to 90 degrees around X and

Y axes, from -45 to 45 degrees around Z axis (optical axis). The distance from the

camera ranges from 450 to 1100 mm for ICVL dataset and from 650 to 1150 mm for

ACCV-3D dataset. For our proposed algorithm, model templates were trained in the

ranges of the object pose. Our algorithm was implemented using C++ and ran on

Windows PC (Core i7-7700 3.6GHz) using 4 cores. The parameters for our algorithm

are summarized in Table 5.1. The estimation accuracy and speedwas comparedwith

existing template matching based [59] and learning based [119, 115, 123] methods.

We used the criteria which was defined in [59] to determine whether the esti-

mated pose was correct. More formally, for a 3D modelM which had ground truth
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Figure 5.7 Example images of ICVL dataset in Experiment 1 (Top row: Camera and
Cup，Middle row: Joystick and Juice，Bottom row: Milk and Shampoo).
The depth image and RGB image are shown for each object. The edges
of the objects extracted from 3D CAD data (green lines) and the coordinate
axes (three colored arrows) are drawn on the images based on the estimated
6-DoF pose by our proposed method.

rotation R, translation T , the estimated rotation R̃ and translation T̃ , the average

distance between the model points x transformed by the ground truth and those by

estimated pose is defined as:

m = avgx∈M∥(Rx+ T )− (R̃x+ T̃ )∥. (5.5)

for asymmetric objects and

m = avgx1∈Mminx2∈M∥(Rx1 + T )− (R̃x2 + T̃ )∥. (5.6)

for symmetric objects such as Eggbox and Glue. If kmd ≥ m where km is a chosen

coefficient and d is the diameter ofM, we defined that the estimated pose is cor-

rect. The coefficient km was set to the value of 0.15 which was used in the existing

research.
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Figure 5.8 Example images of ACCV-3D dataset in Experiment 1 (Top row: Ape and
Benchvise，2nd row: Cam and Can，3rd row: Cat and Driller, 4th row:
Duck and Eggbox, 5th row: Glue and Holepuncher, 6th row: Iron and
Lamp, Bottom row: Phone). The depth image and RGB image are shown
for each object. The edges of the objects extracted from 3D CAD data (green
lines) and the coordinate axes (three colored arrows) are drawn on the im-
ages based on the estimated 6-DoF pose by our proposed method.
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Table 5.1 The parameters used in Experiment 1. The number of generated depth im-
ages (N ) and threshold of gradient orientation histograms (Thg) and of nor-
mal orientation histogram (Thn) for PCOF-MOD extraction. The intervals,
ranges and numbers of templates for rotations (X/Y and Z) and distances to
the camera in template generation.

N Thg Thn X/Y rot. (deg) Z rot. (deg) distance (mm)

1000 100 200 8◦ in ±90◦ (321) 6◦ in ±45◦ (16)

70 in 450− 1100 (10)

for ICVL dataset,

70 in 650− 1150 (8)

for ACCV-3D datase

Estimation accuracy

The graphs which represent the recall, precision and F1 score for each object of ICVL

dataset are shown in Figure 5.9 and those of ACCV-3D dataset are shown in Fig-

ure 5.10. The graphs are obtained by evaluating the dataset using various search

threshold. There are more true positives and false positives (higher recall) when

the threshold is lower, and there are less true positives and false positives (higher

precision) when the threshold is higher. F1 score is defined as a harmonic mean of

precision and recall. For most objects, the highest F1 scores are obtained around the

threshold value of 0.5.

The highest F1 scores for each object of ICVL dataset and mean values are shown

in Table 5.2 and those of ACCV-3D dataset are shown in Table 5.3. The F1 scores

by existing algorithms which were evaluated in [123] are also shown in the tables.

Our proposed algorithm achieved the highest F1 score among the state-of-the-art

methods on ACCV-3D dataset and second highest score on ICVL dataset.

There are two reasons why our algorithm has an advantage over existing tem-

plate based (LINEMOD) and learning based (LC-HF and Deep patch) algorithms.

One is that we sample viewpoints, roll angles and camera distances more densely for

making model templates. On ACCV-3D dataset, our algorithm makes 41,088 tem-

plates (321 viewpoints, 16 roll angles and 8 distances) and the existing algorithms

make 3,402 templates (81 viewpoints, 7 roll angles and 6 distances). Using more

templates makes pose estimation more accurate and robust because the pose dif-

ferences between objects in captured images and model templates become smaller.
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Figure 5.9 Plotting the precision, recall and F1 score for a varying threshold on ICVL
dataset in Experiment 1. Top row: Camera, Cup and Joystick. Bottom row:
Juice, Milk and Shampoo.

Another reason is that our proposed feature PCOF-MOD is extracted from a large

number of depth images those are generated within a certain range of 3D object pose

and the feature is robust to small pose changes of objects. Due to this, PCOF-MOD

relax only the matching conditions for target objects without increasing false posi-

tives under cluttered background and is matched to the testing objects whose poses

are slightly different from those of model templates.

Though SSD-6D is CNN based method and discriminates target objects from

Table 5.2 F1 scores on ICVL dataset for different algorithms.

LINEMOD 　 LC-HF　 Deep patch 　 SSD-6D　 　Ours　

Camera 0.589 0.394 0.383 0.741 0.627

Cup 0.942 0.891 0.972 0.983 0.992

Joystick 0.846 0.549 0.892 0.997 0.975

Juice 0.595 0.883 0.866 0.919 0.945

Milk 0.558 0.397 0.463 0.780 0.719

Shampoo 0.922 0.792 0.910 0.892 0.897

Mean 0.740 0.651 0.747 0.885 0.859
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Figure 5.10 Plotting the precision, recall and F1 score for a varying threshold on
ICVL dataset in Experiment 1. Top row: Ape, Benchvise and Cam. 2nd
row: Can, Cat and Driller. 3rd row: Duck, Eggbox and Glue. 4th row:
Holepuncher, Iron and Lamp. Bottom row: Phone.
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Table 5.3 F1 score on ACCV-3D dataset.

LINEMOD 　 LC-HF　 Deep patch SSD-6D 　Ours　

Ape 0.533 0.855 0.981 0.763 0.913

Benchvise 0.846 0.961 0.948 0.971 0.998

Cam 0.640 0.718 0.934 0.922 0.995

Can 0.512 0.709 0.826 0.931 0.988

Cat 0.656 0.888 0.981 0.893 0.997

Driller 0.691 0.905 0.965 0.978 0.947

Duck 0.580 0.907 0.979 0.800 0.996

Eggbox 0.860 0.740 1.000 0.936 0.995

Glue 0.438 0.678 0.741 0.763 0.926

Holepuncher 0.516 0.875 0.979 0.716 0.976

Iron 0.683 0.735 0.910 0.982 0.995

Lamp 0.675 0.921 0.982 0.930 0.914

Phone 0.563 0.728 0.849 0.924 0.992

Mean 0.630 0.817 0.929 0.885 0.972

background, it uses only RGB information. Hinterstoisser et al. [48] showed that us-

ing depth made pose estimation more robust against background clutters compared

than using only RGB. This is why the F1 score of SSD-6D was lower than those

of Deep patch and our proposed method which used both of RGB and depth on

ACCV-3D dataset. Meanwhile, the F1 score of SSD-6D was highest on ICVL dataset.

This is due to that ICVL dataset includes more occlusions compared to ACCV-3D

dataset. Occlusions have influence both on RGB and depth features, and degrade

more largely the performance of RGB-D based methods.

Processing time

The processing time of our proposed algorithm with and without the memory rear-

rangement are shown in Table 5.4 for ICVL dataset and in Table 5.5 for ACCV-3D

dataset. Estimation speed is boosted by approximately 2 times for ICVL dataset and

by approximately 3 times for ACCV-3D dataset when introducing the memory re-

arrangement technique. The memory rearrangement technique is more effective on

ACCV-3D dataset than on ICVL dataset. This is because the target objects of ACCV-

3D dataset are smaller in the images (e.g. Ape and Glue) than those of ICVL dataset.
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Table 5.4 Processing time (ms) with and without the memory rearrangement (Mem-
Rea) on ICVL dataset.

w/o MemRea w/ MemRea

Camera 112.4 55.9

Cup 71.7 41.3

Joystick 57.9 23.3

Juice 71.7 34.1

Milk 58.0 31.8

Shampoo 71.8 46.8

Mean 73.9 38.9

When target objects in images are smaller, the features at top pyramid layer are less

discriminative and there remained more candidates for the lower pyramid layers.

Then these larger number of candidates are efficiently matched using SIMD instruc-

tions on the rearranged memory map.

Mean processing time of the existing methods for ACCV-3D dataset are shown

in Table 5.6 (only the time of LC-HF were not described in the paper). These re-

sults are taken from each paper and the algorithms were executed on various com-

puting environments. However, Deep patch and SSD-6D are CNN based methods

and were evaluated using GPU (Geforce GTX Titan X for Deep patch and GTX 1080

for SSD-6D). These two methods should take more than a few seconds on CPU.

When comparing ours with LINEMOD, ours is faster approximately by 3 times than

LINEMOD on a rather faster CPU (Core i7-2820QM 2.3GHz for LINEMOD and Core

i7-7700 3.6GHz for ours) using same number of cores (4 cores). From these, we can

conclude that our proposed method is the fastest among the existing methods.

Our proposed algorithm takes approximately 3minutes for the training andmost

part of it is consumed by rendering a thousand of depth images at each viewpoint.

Similarly, existing template matching based [59, 60, 61] and local descriptor based

methods [94, 100] take a few minutes or less for the training where templates at

various viewpoints or 3D features are extracted. On the other hand, learning based

methods [120, 119, 121, 122] take much longer time for training classifiers and col-

lecting training images. Moreover, CNN based methods [128, 115, 126, 123] require

more training time and samples.
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Table 5.5 Processing time (ms) with and without the memory rearrangement (Mem-
Rea) on ACCV-3D dataset.

w/o MemRea w/ MemRea

Ape 256.5 66.5

Benchvise 73.8 28.1

Cam 132.4 57.2

Can 98.9 39.5

Cat 130.9 50.5

Driller 73.4 27.7

Duck 132.7 50.5

Eggbox 140.4 43.1

Glue 125.3 50.5

Holepuncher 180.1 55.1

Iron 62.6 25.9

Lamp 73.7 29.0

Phone 100.8 39.6

Mean 121.7 43.3

Table 5.6 Processing time on ACCV-3D dataset for various methods.

LINEMOD 　 LC-HF　 Deep patch 　 SSD-6D　 　Ours　

Mean time 119 n/a 671 109 43.3

5.3.2 Experiment 2: Evaluation on Bin-Picking Dataset

Experimental setting

In Experiment 2, our algorithm was evaluated on our Bin-Picking dataset where

target objects were piled randomly in a bin. Depth and grayscale images (1280 ×

1024 resolution) of 6 kinds of mechanical parts were captured using an industrial 3D

sensor (Ensenso X36, IDS Gmbh in Germany). A total of 60 images were captured

per object which included 5 different patterns for piling, 4 rotation angles of a bin

and 3 viewing angles of the 3D sensor. The pose of visible target objects (more than

70 % of the surface are captured by the sensor) were annotated by ICP refinement

withmanually annotated initial pose. These annotated pose were transformed to the

images of the rotated bin and different viewing angles based on AR markers which

surrounded the bin. 5 to 10 objects were annotated per bin and the total numbers
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Figure 5.11 Example images of Bin-Picking dataset in Experiment 2. Top row: Bolt
and Connector. Middle row: Holder and Nut. Bottom row: Pipe and
SheetMetal. The depth and grayscale image are shown for each object.
The edges of the objects extracted from 3D CAD data (green lines) and the
coordinate axes (three colored arrows) are drawn on the images based on
the estimated 6-DoF pose by our proposed method.

Table 5.7 The parameters used in Experiment 2. The number of generated depth im-
ages (N ) and threshold of gradient orientation histograms (Thg) and of nor-
mal orientation histogram (Thn) for PCOF-MOD extraction. The intervals,
ranges and numbers of templates for rotations (X/Y and Z) and distances to
the camera in template generation.

N Thg Thn X/Y rot. (deg) Z rot. (deg) distance (mm)

1000 100 200 8◦ in ±180◦ (642) 6◦ in ±180◦ (60) 70 in 700− 900 (4)

of annotated objects were 610 (Bolt), 430 (Connector), 210 (Holder), 412 (Nut), 381

(Pipe) and 388 (SheetMetal). Example images for each object are shown in Figure

5.11.

The existing method [94] which consists of point-pair feature (PPF) and gener-

alized Hough transform was also evaluated on our Bin-Picking dataset. "Surface-

basedMatching" which implements PPF on the commercial machine vision software

"Halcon13" (MvTec Gmbh in Germany) was used for the evaluation. Both of PPF and

our method used 3D CAD in Figure 5.12 for training and were ran on same PC as

Experiment 1 (Core i7-7700 3.6GHz) using 4 cores. The area for pose estimation were

limited to inside the bin (approximately 700× 400 pix).

In the training of our proposed method, the PCOF-MOD templates were made

on the viewpoints of a sphere (Connector and SheetMetal) or a hemisphere (Bolt,
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Figure 5.12 3D CAD of target objects in Bin-Picking dataset. Top: Bolt, Connector,
Holder. Bottom: Nut, Pipe, SheetMetal. The coordinate axes are drawn on
the images (red - X, green - Y, blue - Z.

Holder, Nut and Pipe which are symmetric about X/Y plane), ±180 degrees around

the optical axis and in 750mm - 900mm from the objects. Then the numbers of view-

points are 12 (6), 42 (21), 162 (81), 642 (321) on sphere (hemisphere) at depth 0, 1, 2,

3. The numbers of rotation angles around optical axis are 8, 15, 30, 60 and distances

to the object are 1, 1, 2, 4. The total numbers of templates are 96 (48), 630 (315), 9720

(4860), 154080 (77040). The parameters for our algorithm are summarized in Table

5.7.

Estimation accuracy

On Bin-Picking dataset, the pose estimation was regarded as correct one when the

absolute differences of 6 pose parameters (X/Y/Z positions and rotation angles) be-

tween the estimated pose and the ground truth were smaller than threshold values

were correct. The threshold values of 5 mm in positions and 7.5 degrees in rotations

were used. The graphs which represent the recall, precision and F1 score of our pro-

posed method for all objects of Bin-Picking dataset are shown in Figure 5.13, and

the highest F1 scores of ours and PPF for all objects and mean values are shown in

Table 5.8. The F1 scores of our method are higher than those of PPF on all objects.

PPF describes only the surface features of objects and does not explicitly include any



108 Chapter 5. 3D Object Detection and Pose Estimation from a RGB-D Image

Figure 5.13 Plotting the precision, recall and F1 score for varying thresholds on Bin-
Picking dataset in Experiment 2. Top row: Bolt, Connector and Holder.
Bottom row: Nut, Pipe and SheetMetal.

contour information. This is why the performance of PPF is degraded when the tar-

get objects are industrial parts which commonly consists of simple primitive shapes

like planes and cylinders.

Processing time

The processing time of PPF and our proposed algorithmwith and without the mem-

ory rearrangement are shown in Table 5.9. PPF should be calculated on all pairs of

neighboring 3D point clouds. This leads to longer computational time compared

Table 5.8 The highest F1 score on Bin-Picking dataset.

　 PPF　 　 Ours　

Bolt 0.754 0.944

Connector 0.758 0.982

Holder 0.922 0.983

Nut 0.858 0.980

Pipe 0.879 0.986

SheetMetal 0.700 0.867

Mean 0.812 0.957
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Table 5.9 Processing time (ms) with and without the memory rearrangement (Mem-
Rea) on Bin-Picking dataset

　 PPF　 w/o MemRea w/ MemRea

Bolt 3334.1 230.6 107.2

Connector 2382.4 209.7 89.2

Holder 1343.1 99.6 42.9

Nut 4387.3 214.3 97.0

Pipe 1501.5 100.1 41.6

SheetMetal 3121.3 183.9 77.9

Mean 2678.3 173.0 76.0

to the pixel-based feature like LINEMOD and ours. Furthermore, our algorithm is

accelerated by more than 2 times when using the memory rearrangement and this

speed is faster by more than 20 times than PPF.

Though the image resolutions of two types of dataset (bin picking and tabletop)

are almost the same, our algorithm takes longer time approximately by two times for

pose estimation on Bin-Picking dataset than on the tabletop dataset. This is because

larger number of target objects’ poses should be estimated on Bin-Picking dataset.

Estimation error

Mean absolute errors of PPF and our proposed algorithm for 3D positions along

X/Y/Z axes in mm on Bin-Picking dataset are shown in Table 5.10 and for rotation

angles around X/Y/Z axes in degrees are shown in Table 5.11. These errors are

averaged only among the successful results using the threshold values of 5 mm for

translations and 7.5 degrees for rotations, and the numbers of samples of PPF and

PCOF-MOD for averaging are different.

The errors of PPF and our algorithm are almost the same both for translations

and rotations. This is because the estimation errors depend on the registration al-

gorithm and both of PPF and ours use ICP algorithm for the registration which is a

de-facto standard for 6-DoF pose refinement. The errors in translations are less than

0.5 mm and the errors in rotations are less than 1.0 degrees, those are small enough

for robotic grasping.
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Table 5.10 Mean absolute errors of estimated positions along X/Y/Z axes in mm for
PPF and PCOF-MOD on Bin-Picking dataset.

PPF Ours

tra X tra Y tra Z tra X tra Y tra Z

Bolt 0.546 0.441 0.399 0.392 0.312 0.421

Connector 0.512 0.446 0.437 0.443 0.391 0.448

Holder 0.675 0.583 0.401 0.685 0.647 0.406

Nut 0.412 0.278 0.331 0.384 0.274 0.378

Pipe 0.480 0.339 0.332 0.354 0.254 0.344

SheetMetal 0.629 0.540 0.363 0.662 0.615 0.397

Mean 0.542 0.438 0.377 0.487 0.415 0.399

Table 5.11 Mean absolute errors of estimated rotation angles around X/Y/Z axes in
degrees for PPF and PCOF-MOD on Bin-Picking dataset.

PPF Ours

rot X rot Y rot Z rot X rot Y rot Z

Bolt 2.397 0.710 0.787 1.968 0.687 0.722

Connector 1.444 1.388 1.150 1.372 1.302 0.991

Holder 0.585 0.748 0.897 0.532 0.742 1.029

Nut 0.851 0.755 1.557 0.841 0.765 1.486

Pipe 0.877 0.502 0.704 0.557 0.432 0.564

SheetMetal 0.744 0.690 1.024 0.671 0.571 0.945

Mean 1.150 0.799 1.020 0.990 0.750 0.956

The estimation errors of 6-DoF pose based on the 3D sensor are definitely smaller

than those based only on the monocular camera shown in Table 4.6 and Table 4.7.

Especially the error in Z translation is greatly reduced from 11.485 mm to 0.399 mm.

This is due to the high accuracy in Z translation of the 3D sensor (Ensenso X36),

which is approximately 0.2 mm in our experimental setting.

5.3.3 Failure Cases

Typical examples of our failure cases in Experiment 1 and 2 are presented in Figure

5.14. These failures are mainly due to the following reasons.
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Figure 5.14 Example depth and grayscale images of the failure cases of our proposed
method. 1st row: Some of BearingCover and UrethaneTube from Bin-
Picking dataset were not recognized due to lack of 3D point clouds. 2nd
row: Some of Camera and Milk from ICVL dataset were not recognized
due to occlusions. 3rd row: There were false positives of Ape and Driller
(ACCV-3D dataset) due to background clutters. 4th row: 3D pose esti-
mations of SheetMetal and L-SheetMetal (Bin-Picking dataset) were failed
due to partial correspondences. 5th row: 3D pose estimations of Glue and
Lamp (ACCV-3D dataset) were failed due to partial correspondences.
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Lack of measured 3D point clouds

The 3D sensor (Ensenso X36) sometimes cannot measure enough 3D point clouds

of BearingCover and UrethaneTube from Bin-Picking dataset for 6-DoF pose estima-

tion (1st row of Figure 5.14). The projector of Ensenso projects structured light to the

objects andmeasures the depth based on stereo matching. However, the metalic sur-

face of BearingCover and the translucent material of UrethaneTube make it difficult

for the sensor to capture the reflected pattern of light correctly. Some other materials

like black rubber and transparent glass possibly cause same problem. This problem

might be partially solved by using 3D sensors those are based on other measurement

principles such as phase shifting and 3D laser scanning.

Partial occlusion

There are some man-caused partial occlusions in ICVL dataset and these sometimes

make it difficult for us to estimate object pose (2nd row of Figure 5.14). The template

based pose estimation like ours is more sensitive to occlusions than learning based

methods because the model template uniformly samples the features from whole

object area. However, partial occlusions might not become big problems for pose es-

timation in real applications like robotic grasping because grasping occluded objects

itself is too hard for a robot arm to execute.

Background clutter

The examples of wrong matches in background are shown in 3rd row of Figure 5.14.

Ape and Glue in ACCV-3D dataset are fitted to other objects in background. These

failures are prone to occur when the size of target object is small or thin in the cap-

tured image. This does not mean that the real size of the object is small/thin and

these failures could be overcome by capturing the objects at close range so that the

objects look large in the image.

Partial correspondence

The last case is caused by the partial correcpondense to a wrong pose. Two exam-

ples from Bin-Picking dataset and another two examples from ACCV-3D dataset are
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shown in 4th and 5th row of Figure 5.14. This problem is almost the same as in 6-

DoF object pose estimation from a monocular image (Subsection 4.3.4). Therefore,

the classifier or regressor which is specifically trained so that it can discriminate

small differences of the appearance and shape would be a good solution.

5.4 Conclusion

In this chapter, we introduced the fast and precise 6-DoF pose estimation from a

RGB-D image which consists of three main part: PCOF-MOD (Multimodal Perspec-

tively Cumulated Orientation Feature), BPT (Balanced Pose Tree) and the memory

rearrangement for coarse-to-fine search. PCOF-MOD is a RGB-D feature which is

robust to the change in object 3D pose. BPT is an tree-based data structure of model

templates which reduces the search space of 2D position and 3D pose simultane-

ously. Additionally, two kinds of binary features are rearranged so that nearby

features are matched at one time using SIMD instructions. The experimental eval-

uations were carried out on two different dataset, one is publicly open dataset in

tabletop scenes for service robots and another is our own Bin-Picking dataset for

industrial robots. The results showed that our proposed method was more accu-

rate and fast than the state-of-the-art methods which include emerging CNN based

methods. The errors of our estimated pose were less than 0.5 mm in translations

and 1.0 degree in rotations, which are small enough for robot arms to grasp. Our

algorithm takes a few minutes for the training and requires no training data other

than CAD of target objects, and this is desirable property for real robotic applications

where various target objects should be registered on site.
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Chapter 6

Conclusion

This chapter provides concluding remarks on the contributions of this thesis and

gives an outlook to potential future research and applications.

6.1 Conclusion

This thesis presents fast algorithms for three types of specific object detection and

pose estimation, 2D object detection and pose estimation, 3D object detection and

pose estimation from a monocular image and 3D object detection and pose esti-

mation from a RGB-D image. All of our proposed algorithms are global descrip-

tor (template matching) based approach which can handle various objects includ-

ing texture-less and simple-shaped objects, and are robust against background clut-

ters. Furthermore, the model templates are trained based only on a model image

for 2D pose estimation and a CAD for 3D pose estimation, and the training takes

less than a few minutes. These characteristics of the approach are suitable for real

applications such as factory automation and AR/MR. Our proposed methods con-

sist mainly of two components, pose robust features and efficient data structures for

template matching.

Firstly, we have proposed image features which explicitly handle certain range

of object pose. The way how to extracting the features is that hundreds of randomly

transformed images are generated and only dominant orientations are extracted per

pixel from the orientation histograms. For 2D object detection and pose estima-

tion, we have applied this to the discretized orientations of image gradients which

were robust against background clutters and illumination changes. Furthermore,

the discretized orientations are efficiently represented as binary numbers and the
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similarity score is quickly computed by logical operations. It has been experimen-

tally shown that our proposed feature which was named Cumulated Orientation

Feature (COF) could tolerated the appearance changes caused by 2D object pose

changes without degrading the robustness against background clutters. Then COF

was extended to handle 3D object pose changes for 3D object detection and pose

estimation from a monocular image. The extended feature which was named Per-

spectively COF (PCOF) are based on the discretized orientations of image gradients

and are extracted from a thousand of randomly 3D transformed depth images which

were synthesized using 3D CAD of a target object. For 3D object detection and pose

estimation from a RGB-D image, Multimodal PCOF (PCOF-MOD) has been intro-

duced where the discretized orientation of surface normals were added to PCOF. It

has experimentally been shown that PCOF-MOD was robust enough to be applied

to the randomly piled objects (bin picking scene).

Secondly, we have presented the hierarchical pose trees for efficient coarse-to-

fine search with image pyramids. The object pose is sampled regularly and the

sampling intervals are changed depending on the image resolutions of the image

pyramids, for example sparse pose sampling for the higher levels and dense pose

sampling for the lower levels. For 2D object detection and pose estimation, the

number of pose parameters is two, in-plane rotation angles and object scales, and

the numbers of pose are halved at one level higher in the image pyramid. For 3D

object detection and pose estimation from a monocular image, the number of pose

is much larger than that of 2D pose and we have introduced Hierarchical Pose Tree

(HPT) which hierarchically clustered model templates based only on the similarity

scores between the templates. This greatly reduces the number of templates which

should be matched against an input image and it has experimentally been shown

that HPT made 3D pose estimation faster by more than 1,000 times. In 3D object de-

tection and pose estimation from a RGB-D image, the discretized normal orientation

feature which is extracted from a depth image is added (PCOF-MOD). This makes

the template more discriminative among 3D pose compared to PCOF templates and

we have proposed Balance Pose Tree (BPT) where 3D pose was regularly sampled

without pose clustering based on the iteratively decomposed polyhedrons. In BPT,

the numbers of child nodes of all parent nodes are almost equal and the hierarchical
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search tracing along the trees was more efficient than in HPT. Furthermore, the op-

timum memory rearrangement for coarse-to-fine search has been proposed. At the

lower levels of image pyramid, two kinds of orientation features (gradients and nor-

mals) within nearby pixels are restructured to be linearly aligned. The model tem-

plates are matched against these rearranged feature maps using SIMD instructions

and it has experimentally shown that the rearrangement made 3D pose estimation

faster by more than two times.

The pipelines of object detection and pose estimation based on the above techni-

cal components have also been developed and evaluated. Many experimental eval-

uations have been done on publicly open dataset and our own practical dataset for

three types of specific object detection and pose estimation (2D, 3D from monocular

and 3D from RGB-D). The processing times detection accuracies and were compared

with the existing methods and it has been shown that our proposed methods were

faster and more robust to background clutters. We also have evaluated the precision

of the estimated pose and the errors were small enough for robotic grasping and

assembly (e.g. less than 1.0 pixel for 2D and 1.0 mm for 3D). The failure cases of our

proposed methods for three types of pose estimations have been shown respectively

and the reasons and the possible solution were discussed.

6.2 Future Work

In this thesis, fast and robust algorithms for 2D/3D object detection and pose esti-

mation are proposed. Although it is experimentally shown that our proposed algo-

rithms are faster and more robust against background clutters, many more exten-

sions and applications can be considered as outlined in the following.

Scalability

The processing times of our proposed algorithms increase linearly with the number

of kinds of objects because the model templates for all objects should be scanned in

an image. To alleviate this problem, hashing techniques has been introduced to 2D

[14] and 3D [60] object detection and pose estimation. These hashing techniques can
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be combinedwith our orientation features and are helpful for improving the scalabil-

ity. Another option is to make hierarchical pose tree (HPT in Subsection 4.2.2) based

on the templates from different object poses and classes. This clusters the templates

whose similarity score is higher than a certain threshold even if the templates are

made from different objects. HPT is effective for detection of multiple kinds of ob-

jects when the appearance and shape of the objects are similar. In such case, many

templates of different objects at coarse layer become similar and they are clustered

into fewer number of templates.

Handling intra-class variation

Though many of the target objects are rigid in factory scenes, the difference be-

tween reference model and the input image or 3D point cloud sometimes occur by

various factors. Moreover in food industry, the algorithms should handle objects

whose shapes are different individually, for example fruits and vegetables. To han-

dle these intra-class variation, matching of multiple template is effective. Similar

to deformable part model [150], the multiple template model consists of a global

root template and several part model templates. Firstly, the root templates are ex-

haustively scanned in an image at low resolution. Secondly, the part templates are

scannedwithin the limited area based on the relative position of the part to the object

center at higher resolution. The part templates might be extracted from regular grids

or selected manually so that they are discriminative in the shape and appearance.

Exploiting machine learning

The background is often fixed in factory scenes, for example belt conveyors, contain-

ers, pallets and baskets. When the background can be defined using a few images,

the background images are utilized to learn discriminative features and classifiers.

Like exemplar SVM [102], classifiers can be learned using one positive samples and

many negative samples those can be extracted from a few background images. The

ad hoc learning for feature selection and weight extraction [120] is more promising

for FA and robotic applications. This will be easily combined our proposed features

and hierarchical data structures, and the training based on linear SVM does not take
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so long time. The machine learning can be used to recognize subtle difference in ap-

pearances among different object poses. The different object poses are regarded as

different classes to be classified. This should be effective especially for estimation of

3D object pose because there are so many similar appearances in various 3D poses

of objects and this induce many false positives as seen in Figure 4.14 and 5.14
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