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Abstract

Generally, all sepectrum components are simultaniously calculated
in two-dimensional fast Fourier transform (2-D FFT) even
when only a previously specified subset of them is required. Five
typical methods for calculating such a subset of components are
introduced and the properties of them and the relations among
them are discussed from a viewpoint of the computation costs.

One of those methods is effective in comparison with 2-D FFT
method when sxt < N. (log;, (MXN) - log,N). (M, N: the size of
image data, sXt: the number of specified components, 1 <s<M, 1
<t<N) Another method is always effective when sxt varies from
1 X1 to MXN. The latter is less effective than the former when s
Xt <(log: (M+N)) / (MXN). The priority measure for the selec-
tion of the best method w. r. t. computation time is exactly made
clear for 0<(sxt) / (MxXN)<1.

1 Introduction

Discrete Fourier analysis (DFA) is one of the most classical data
processing techniques and the importance of DFA has been emp-
hasized in many data processing fields. In order to make DFA
practical, several kinds of improvements have been accomplished
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w. r. t. more efficient FFT algorithms", easier design techniques of

filters® 4

and estimation methods of round - off error® or folding
error®,

Particularly in image data processing, other kinds of improve-
ments are necessary as countermeasures to the extensive memory
capacity due to 2 —dimensional data. Onoe’s method” which enab-
les small scale computers to quickly process large scale image data
and a new method for calculationg 2 - dimensional Fourier series?
are notable from this point of view.

This paper proposes a selection procedure for utilizing the com-
ponent selective methods for calculating 2 - dimensional discrete
Fouries transform (2-D DFT). Five typical methods are intro-
duced in this paper. In general, all spectrum components are
simultaniously calculated in 2 - dimensional fast Fourier transform
(2-D FFT) even when only a subset of spectrum components are
required. It is our idea to reduce the computation costs by
calculating only the specified subset of components. The proposed
procedure offers a technique to utilize the methods selectively w. r.
t. their computation costs. Several utility restrictions against these
methods and the degree of saved computation costs caused by
them are also discussed in detail. It is also pointed out that they
are applicable without any modifications to other orthogonal trans-
forms and their inverse ones.

The component selective methods are introduced in section 2.
Properties and relations of them are discussed in section 3, where
the best method w. r. t. computation costs is exactly made clear.
Other additional considerations are given in sections 4 and 5,

respectively.
2 Preparations and component selective methods

2. 1 Preparations

Let f= {fj} (i=0,1, ......, M—1,j=0,1, ...... , N—1; f; real) be an
image data and F = {F.} (k=0, 1, ...... ,M—-1,1=0,1, ...... ,N-1)
be 2-D DFT of the image data f. Each f; and F. are simply

called an (picture) element and a (spectrum) component, respective-
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ly. 2-D DFT F is defined by eq. (1) and is easily modified as
shown in eq. (2), where the 2-dimensional transform is divided
into two steps of 1 - dimensional discrete Fourier transform (1 -D

DFT). This process of transformation is denoted as f F >
F hereafter.

Fu=X % f, exp {~21] (B + ) r=v=T W
k=0, 1, ..y M~ 1, 1=0,1, .y N— 1
Fo= % (2 & exp{-2aJ41} ] exp {-207 -}
Fy
= T [F) exp {200 ) (2)

As 1-D DFT can be replaced by 1 -dimensinal fast Fourier
transform (1 -D FFT), there exist formally five procedures for
realizing 2-D DFT. One of them is such a procedure that each
one of M XN components is directly calculated by means of difini-
tion (1). (direct-mode) Other four procedures are DFT - mode, FFT
-mode and mixed -mode 1, I defined as eq. (3). (Also refer to
Table 1.)

(3). (also refer to Table 1)

Table 1 Four confignrations for 2-D FFT with 1-D FFT

I-DDFT 1-D FFT

"VERTICAL
TRANSFORM

HORIZONTAL
TRANSFORM

O ‘Idimensinal Fourier calculation
---- > ! DFT-mode -—~% FFT -mode
—> mixed- model — ‘mixed ~modell
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@

direct - mode f > F ; @M:2-D DFT
® @
DFT - mode o f F F, @, @:1-D DFT
® ®
FFT - mode o f F F: @ ®1-D FFT (3)
@ @
mixed-mode 1 : f F F:; @ : 1-D FFT
i ) @ : 1-D DEF
mixed-mode II : f > F’ F; @ : 1-DDFT

@ : 1-D FFT

2. 2 Component selective methods of 2-D DFT
2-D DFT is a linear transformation from M XN elements to M
XN components. Let the number of components be restricted to s
Xt (1<s<M, 1<t<N) as shown in Fig. 1.
Three principles are taken for the realization of the component
selective methods (CS - methods) for calculating 2-D DFT.
@ 2- DFT is divided into serial two steps of 1-dimensional
transforms.
@ 1-D DFT and 1-D FFT algorithms are combined as the
serial two steps of 1 - dimensional transforms in order to quickly
calculate only the specified subset of components.

N N
X XX —====——= X "
X XX X
X X~ |
M ! S ! > M
| N !
! AN : eq(l)
XX —-==mmmm X o
1mage data 2-DDFT 0

f = {f1;} F={Fkl}
Fig.1 A method for calculating only a subset of

Fourier spectrum components

+ It is supposed in this paper that the specified subset of components
is a rectangular subregion of Fourier domain. This assumption scarce-
ly provides the loss of generalities w. r. t. the evaluation of computa-

tion costs of new methods proposed here.
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® Both 1-D DFT and FFT for a line or row of image data can
be omitted when nothing of the specified components is in-
volved in the corresponding line or row in order to reduce the
computation costs.

Application of these principles to five modes in eq. (3) produces
next five CS -methods for calculating 2—-D DFT. (direct — selective,
DFT —selective, FFT —method, mixed —method 1 and II)

Procedures and computation costs of them are described by
using next notations.
© N® (M, N; s, t) : the number of required multiplications when

only the s Xt components are calculated from image data with M

XN elements
@ Kk : the index of the methods, k=1 (direct - method), k=2 (DFT

—method), k=3 (FFT —method), k=4, 5 (mixed - method 1, 1)

@ log M : the logarithm of M to the base 2

(1) mixed — method 1 As N. MlogM multiplications for N 1-D
FFT's (f — F’) and s. (t. N) multiplications for s 1 -D DFT’s (F’
—> F) are needed as shown in Fig. 2, the total number of
multiplications is evaluated as eq. (4).*

N® (M, N; s, )=(MXN) log M+(sxt). N (4)

(i1) other four methods Similarly, N (M, N; s, t), k=1, 2, 3
and 5 are evaluated as shown in egs. (5), (6), (7) and (8).

NP (M, N; s, )=(sxt). (MXN) (5)
N? (M, N; s, t)=s. (MXN)+(sxt). N (6)
NP (M, N; s, )=(M xN) logM+s. (NlogN) (7)
N (M, N; s, t) = s. MxXN) + s. NlogN (8)

+ If horizontal transformation precedes vertical one, we may exchange
M with N and s with t in eq. (4), and vice - versa. In this case, N¥
becomes (M X N) logN + (sxt).M. This exchange rule is valid also for
]V(l) N‘(Z) N(3) and N(S)'Q)



58 (08) RPN &3 6Tt BEHLS

N
XxKK DT IIIRRERRREAE:
x’;‘*'l"=:'::, N, i XK oot v by bt
AR AR R i R ER RS
M o[ i AT s
IR ey
Cibirinii eal) TR
Pl i ity 1D FFT RN
Xpii it ir ik N(MlogM) Xt itiiix
N
F' —=F t
N
| /= |\
eq (2) 0 Tk
1-D DFT
(sxt)N

Fig.2 Procedure of mixed-method I

and the estimated number of multiplications

If let s be equal to M and t equal to N, FFT - method just agrees
with 2-D FFT, where N9 (M, N; M, N)=(M xXN) log (MXN). As
the 2-D FFT method is a method which is commonly used on the
real occasion, our subject is to clarify the properties of CS-
methods and the relations among them by comparing NV, N@,
N® N9 and N® with N9 (M, N; M, N). These considerations

are given in section 3.

2. 3 Generalizazion of CS - methods
CS - methods are generalized by putting such a constraint as
shown in Fig. 3 and eq. (9) also to image data f— {f;} . In this
case, all elements are zero except for a subregion mXxXn of the
whole region MXN. (1<m<M, 1<n<N)
x0: (i, j) € mXxXn subregion

f= {fu'} ) fij { (9)

=0: (4, j) € elsewhere
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N N

eq.(1)

n T2, ™~

f— (fij) F= {Fkl} ™0

Fig.3 Generalized method for calculating only
a subset of Fourier components

New CS - methods genetalized in this situation are called gener-
alized CS —methods and are realized by omitting 1-D DFT or 1 -
D FFT calulations in lines or rows where all elemens take value 0.

The reasons why this constraint is practical in real systems are
as follows:

@® Two dimensional filters for image processing are usually des-
igned as FIR filters¥ where the majority of elements take value
0. These filters are important for image processing.

@ A frame which consists of zero- value elements is usually
attached to the peripheral part of image data when M<2* and /
or N2 (a,b =1,2 3, ...... ).

® 2-D inverse FFT is frequently applied to bandlimited inputs
where the majority of components take value zero. (Also refer
to section 4. 1.)

(1) Generalized mixed - method 1 As nxMlogM multiplications
forn 1-D FFT’s (f — F’) and s X (t - N) multiplications for s
1-D DFT's (F° — F) are needed, as shown in Fig. 4, the total
number of multiplications is evaluated by eq. (10).

N® (m, n; s, t) = n- MlogM+(sxt)-N (10)

(ii) Other generalized CS - methods Similarly, ¥ (m, n; s, t),
k =1, 2, 3 and 5 are evaluated and these results are summarized
in Table 2, together with N®.
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Fig.4 Procedure of generalized mixed — method I and

the estimated number of multiplications

Table 2 Theoretical computing costs

generalized — IN® (m, n;s, 1) E® (Q=N®/N® (M, N; M, N)
direct - method 1|(sxt) - (MxN) Q - (M xN)/log (MxXN)
DFT - method 2l(nxs)- M+(sxt)-N |R-(nxM)/Nlog (M xN)

FFT - method 3

n-MlogM-+s-

NlogN| (n - logM)/(Nlog (MX N))+ R - logN/log (M x N)

mixed - method I 4

n-M logM+(sxt)- N|n-logM/(Nlog (MxN))+Q - N/log (M xN)

mixed - method I 5

(nxs)-M+s-Nlog N|R:({mxn)+N logN)/(Nlog (MxN))

o Q= (Xt/AM X N),

R=s/M, 1<s m<M, 1<t n<N

o This table is valid also for CS - methods when m — M, n — N.
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These results concerning generalized CS —methods in Table 2 are
valid also for CS —methods on the condition that m and n are
exchanged with M and N, respectively.

3 Properties and relations of CS - methods

3. 1 Preparatory considerations

In the case of direct - method and mixed — method I, for example,
eqgs. (11) and (12) are derived based on the relations among N® (M,
N; s, t), N (M, N; M, N), k=1, 4 as the upper bounds of sXt.

sxXt<log (M XN) : direct — method (11)
sXt<M - (log (MXN)-logM) : mixed - method 1 (12)

Table 3 shows numerical examples of egs. (11) and (12). It is
known that mixed -method 1 for M =N = 128 can compute
more than 64 times of components than direct - method. This
means that components in lower band from 0-th to 15-th har-
monics can be calculated by mixed - method I while only those
from 0-th to 4-th harmonics are calculated by direct — method.
These preparatory considerations lead us to the certainty that
these CS - methods or generalized ones would be actually utilized
in several applications.

In order to proceed these considerations systematically, next
notations are used in the following discussions. Q in eq. (13) is the
component selection ratio (cs —ratio) and E® (Q) in eq. (14) is the
efficiency measure (E —measure) for k —th method.

Table 3 Numerical example of the
upper bounds for s < t

M XN | g8 |16 x 16132 x 32/64 x 64 12?22
direct — 6 8 10 12 14

method| 94%| 3.1%| 098%| 0.29%| 0.08%
mixed— | 24 64 | 160 | 384 | 896
method 1| 88%| 25%| 16%| 9%| 6%

upper column : the number of components s X t
lower column: cs-ratio (s X t) / (M X N) %
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Q=(sxt) / (MXN) (13)
E® (Q=N" (m, n; s, t) / N9 (M, N; M, N) (14)

where k=1, 2, 3, 4, 5 and N* (m, n; s, t) are modified by using

Q as shown in Table 2.

3. 2 Properties of CS - methods
(i) Permissible cs —ratio When the efficiency measure E® (Q) is
less than 1 as shown in eq. (15), CS - methods or generalized
ones can be executed faster than 2-D FFT. Let Q. be the
maximum of @ which satisfies eq. (15) for each k and be called

permissible cs - ratio.
Qi=max Q) s. t. E¥ (Q<1, k=1,2, 3,4,5 (15)

Q) for direct — method, Q: for DFT - method, Q; for FFT — method
and Q, Qs for mixed — method I, I are easily derived from eq.
(15) as a explicit functions of M, N, m and n, and they are
summarized in table 4, where numerical examples are also added.

Table 4 Estimated permissible CS - ratio

permissible cs-ratio for k - th method (evaluated results) = :Ml’zl\é - 312:8 od
Q| log(M X N) /(M x N) 0.08% 0.08%
Q.| (—n -M++/n?- M*+4N? M log (M XN))? / (4M - N°) 0.99% 8.23%
Q| Qi1 _ _
Q| (N-log(M x N) — n - logM) / N? 5.47% 821%
Qs| M XN) (logMXN))P/(n-M+ N -logN)* 1.08% 3.89%

According to these results, it is known that the relation among the

permissible — ratio’s is represented in eq. (16) for any pair of M and N.

Q; (FFT - method)>1>Q, (mixed - method 1)

>Qs (mixed - method 1) >Q, (DFT - method)

> @, (direct — method)"

(16)

+ Because direct - method (or generalized one) scarcely has the practi-

cal efficiency as a component selective method for 2-D DFT, let us

put it out of considerations hereafter.
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It is also convincing that at least one CS - method or generalized
one exists for any specified cs-ratio Q within 0<Q<1.
(#1) characteristics of E*® (Q) measures In Fig.5 and Fig.6,

1.0
m,/Morn, /N ' .-
(3) . ~
E /’/
P
- . /./
} —~
- o/a,o/d
. —— o=
— if o~
—
o————’——’°/0/
0
0.005 0.01 0.05 01 Q@ ———> 05 1.0
Fig.5 An example of E® (Q——
1.0
M, N
L ]28)(128//’,/
E( 4) .
S = 16
A” ”””— L4
0.5 — A)::J__—___‘__—-)(—
)(_—-——’-—’_’—'%
1,1
=T
0 | I
0.005 0.01 0.05 01 Q —> 0.5 1.0

Fig.6 An example of E* (Q——mixed-method | —
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characteristics of E® (Q) measures for generalized FFT - method
(k=3) and generalized mixed - method 1 (k=4) are shown. If
the strict value of E® (Q) is needed, it is numerically obtained
from Table 2. Each E® (Q) has the tendency of the rapid
decreasing depending on the decrease of cs-ratio Q. The next
properties of E® (Q) are known from these results.

@ E¥ (Q) for FFT -method (k = 3) depends only on Q, m/M
and n/N. Others (k=2, 4, 5) depend on M, N, Q, m /M and n
/ N.

® E -measures E® (Q) for CS - methods never fall below 0.5, and
those for generalized ones fall below 0.5.

@ Computation costs of CS - methods can be reduced to 50% of
those of 2-D FFT method, and those of generalized ones be
reduced to 100%.

3. 3 Relations among CS - methods
It is important to find out a procedure to choose the best
method among the generalized CS - methods for arbitrary value of Q.
In Fig.7, E® (Q) measures for k =2, 3, 4 and 5 are depicted
together. There exists a crossing point Q, of them for a given pair
of M and N, as shown in Fig. 7, and Q, is formally derived by
letting E? (Qo)=E® (Qo) = E¥ (Q)=E® (Qu).
Q, is given by eq. (17) and is called “critical point " of CS -
methods.

Qo=(log M+N) ) / (MXN) (17

The critical point has the following properties:

(D Only one critical point exists for a pair of M and N.

(@ As any one of the CS - methods requires the same computa-
tion cost for @ = @, any one of them can be equally chosen at
this point.

(3) The order of E® (Q), k =2, 3, 4 and 5 where Q=Q, is just the
reverse order of them where Q<Qo.

@ While Q, is independent w. r. t. m and n, E¥ (Q) varies with m
and n.
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1.0 ‘ | o
<-—-->: DFT ~method mM |
Oor n/N /
: FF'T - method {{/ _ '
oo + : mixed ~method I g /-/
<t+--me- : mixed - method II -
Py
(K) ./'/
E
| .
0.5 /”L” , 7
. 4
{ .
-
[ I A B
' i 1 !
shift of critical pointJ

|
0.01

0.1 0.5 1.0

@, ®, ©, and ® are the critical points for M, N= 128 , 64, 32 and 186, respectivily.

Fig.7 Examples of E® (Q), k = 2, 3, 4, 5 and their “critical point”
Table 5 The order of priority to choose the best method

argtégg)s of mMn’:le (10%) ml\illzl\flzzé(Z% CS —-methods  |generalized CS-methods
0.0~Qo 0.0~6.3 00~03| A—-D—-C—B A—-D—-C—B
Q~Q:| 6.3~145 03~11| B-C—-D—-A B+C, D+ A
Q:~Qs | 14.5~18.0 1.1~12f{ B—-C—D B+ C,D
Qs~Q,| 18.0~26.0 1.2~59| B—>C B+C,D

Q~(59 " [26.0~100.0] 59~1000] B B

A: direct — method, B: FFT — method, C, D: mixed - method, I, II

.................

.................

..........

Using the critcal points Q,, together with the permissible points Q.
Qs, Qi and Qs, the order of priority to choose the best method is

determined as Table 5.

Some numerical examples are also app-

ended in Table 5. As these results are applicable for any combina-
tions of M, N, m and n, we can usually use this table to choose the
best one among the generalized CS - methods on the real occasion.
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4 Other considerations

Properties of the CS-methods and their generalized ones and
the procedures to use these methods were made clear in section 3.
Other related considerations are summarized in this section.

4. 1 Extension to inverse 2-D DFT and other transforms

As two —dimensional inverse DFT (2-D IDFT) of F= {Fu}
defined by eq. (18) is equivalent to 2-D DFT of FF’= {F./ (MX
N) } defined by eq. (19), CS - methods can be easily extended to
“element selective methods” (ES —methods) for calculating 2-D 1
DFT. Figure 8 shows the procedure to realize the ES — methods by
using CS - methods. All results concerning the CS - methods given
in section 3 are valid for ES — methods without any modification.

B 1 N-1 M-l ki | 1j
fij*‘ M <N ];0 kg(:) Fkl- cexXp {+ 2”] ( M -+ N > } (].8)
N-1 M-1

=Y S Fa/ MxN). exp {~2a] (55 + )} (9

1=0 k=0

Although the discussions are restricted only to Fourier Trans-
form in this paper, CS-methods are easily extended to other
orthogonal transforms such as Walsh — Hadamard Transform
(WHT), which are also important in image data processing.

N N

X—HK> | - X

X ] 2-DIDFT

M N .

K o )| eq (19 M
' \\ : using
1 .~ -
X Y ommmmmmme 22X CS - method

F={ Fkl /(MN)} f= (fij )

Fig.8 ES - methods for calculating 2 -D IDFT by CS - methods
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data results
X1(0)
Xo(0) O~ >/L —- g/Oxz(O)
\Wn X1(1)
Xo (1) > W2 Xz (1)

Wi ;/O X2(2)

X2(3)

W=exp{-2zJ/N}, J=/-1
Fig.9 Signal flow graph for FFW (N = 4, base — 2)

Figure 9 is a signal flow gragh of FFT (N=4, base=2), where
an example of batterfly operations is denoted by eq. (20).

X1 (2)=x0 (0) + W2 x, (2), W=exp (—27J/N) (20)

As W is always equal to 1 in WHT, CS - methods proposed for 2
~D DFT are applicable directly to 2-D WHT when we exchange
the number of multiplications in FFT with that of additions in
WHT. Therefore, the results obtained in section 3 are valid also
for WHT and also for other orthogonal transforms.

4. 2 Applications

CS - methods play an important role for extracting the specified
spectrum features of images as quickly as possible.

Figure 10 (a) is an image data of chemical fiber fabrics where a
“float” defect exists. (sampling pitch = 0.05mm X 0.05bmm, density
levels = 128 and M XN = 64x64) It is important in fabric image
processing to inspect the periodicity of warp or weft in order to
recognize warp or weft defects!® In this case, it is enough to
calculate only a subset consisted of the neighboring components
on the corresponding frequency axis. Figure 10 (b) shows Fourier
spectrum of Fig. 10 (a) and (c) shows two subsets of (b), which are
calculated by means of mixed - method 1 (where sX¢ = 10x40
and 40X10). These results were used for the inspection of the
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t

“float defect” (b) Fourier spectrum
(chemical fiber fabrics)

of (a) celculated by 2-D FFT
(a) an image data (MxN=64 X 64)

sxXt=10Xx40 sXt=40x10
(for inspecting warp defect) (for inspecting weft defect)
(c) two subsets of (b) calculated by
mixed-method I (MXN=64x64)

Fig. 10 An application of CS- method
for extracting the specified spectrum features

periodicity of warp and weft.

The processing time needed in the above experiment is sum-
marized in Table 6, where other experimental results are also
shown. The programs for experiments are written in FORTRAN
(just below JIS 7000) and executed by minicomputer (PFU -200
system). It is known that these experimental results are well
coincident with the theoretical ones given in section 3.

For example, theoretical boundaries given in Table 3 are well



On a Selection Rule for utilizing the Component Selective Methods of

1387. 6 Two - DimensionalDiscrete Fourier Transform (KOSHIMIZU)

Table 6 Experimental results of calculation time

size of image data M X N
st 16 x 6 32 x 32
9 978 ms 5004 ms
25 1218 5486
49 1578 6202
81 64) "5062 7170
121 8370
169 (160) 9841
2_-DFFT 1684 ms 9490 ms

~—->theoretical boundaries given in Table 3

69

(69)

coincident with experimental ones shown in Table 6, where —>

and

>mean the theoretical boundaries.

CS —-methods and their generalized ones are also important for

realizing ideal low — pass or high - pass filtering of images as qui-

ckly as possible. If the low - pass band consists of sXt compo-

nents, the number of multiplications required for realizing this

filtering is evaluated as follows:

using 2-D FFT method

{ (MXN) log (MXN) } + [ (MxN) log (MXN) )

using CS — method

(21)

{ (MXN) logM+s. NlogN } + [(t. MlogN+(M xN) logN ] (22)

, where { } is the number of multiplications for Fourier

transform and [

) for inverse Fourier transform.

Furthermore, as two — dimensional filters in image processing are

usually designed as FIR filters, such as 5X%X5 smoothing and 9 X9

Laplacian filters where the majority of elements in the outside of

the mask are equal to zero, generalized CS— methods offer a pow-

erful aid especially for fast convolution processing using these FIR

filters.
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5 Conclusion

This paper has established intermediate methods between 2 -D
DFT and 2-D FFT methods for calculating only a subset of
spectrum components of images. These methods are really utilized
in several applications as shown in section 4. 2, and are easily
extended to inverse transforms and other orthgonal transforms as
given in section 4. 1. Several utility restrictions against these
methods and the procedures to use them were strictly made clear
in section 3.

In order to make these methods more efficient for several appli-
cations, it is important to put the following points under investiga-
tion.

(1) As the savable computation cost due to these methods in
about 50 % at most (in the not generalized cases), some effective
countermeasure must be taken to improve the component selective
Fourier calculations.

(2) From this viewpoint, it would be prospective to develop “a
component selective method for calculating 1 - dimensional FFT” .
(3) Implementation of these methods as a subroutine library and
improvement of them in combination with Onoe’s method” are also

important for the real applications.
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