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W(o) Weierstrass points

Yukio HIRASHITA

(Received April 6, 1981)

The aim of this article is to generalize a notion of Weierstrass
points. For any divisor é we introduce W (3) Weierstrass points
and M (1/6) Weierstrass points, and we estimate the numbers of
these points. A W(l) Weierstrass point is a Weierstrass point in
the ordinary sense, and a M (1/) Weierstrass point corresponds
to a D Weierstrass point defined by means of

H(C, (QH®rr"D2 (¢yD) in the algebraic geometry [2].

1. W(3) Weierstrass points.

Let R be a closed Riemann surface of genus g and é a divisor.
Then we have the following Riemann-Roch’s theorem.
dim M(1/6) =dim W) +degd—g+1.

(1=Z7=k) of W) we write
f1(2) fa(2) fr(2)
W(z)= fiV(2) f2P(2) e (2)
S5 (2) S5 (2) fr*P(2)
The above Wronskian defines an Abelian differential @5 of order
k(k+1)/2, which is independent of a choice of a basis. Conse-
quently we obtain
deg(@s) =k(k-+1)(g—1).
By the Riemann-Roch’s theorem one computes that
dim M(/6 P*)=dim W({ P»1)+dego+(n—1)—g+1
and
dim M1/ P*)=dim W P*)+deg §+n—g-+1.
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This insures
dim M{/6 P* 1Y) —dim M(1/s P*)=dim W P*1)
~—dim W P*)—1.
It is easily checked that
MQ/6 P - M(1/6 P+ 1Y) and W( P 1) W Pr).
As an easy calculation shows
0<dim W( Pr ) —dim W P*)<1.
For each Abelian differential » we have deg(w) =2g—2. Itis easy
to see that W p™) =0 where m=2g —degd—1. This guarantees
that there exist 2 spaces W p*;) (1=<j=Fk) such that
dim W P#*; H)=dim W( P*;)+1
in the sequence
W) DOW P)2---DOW(e P™)=0.
We write
0<n<mo<lo-<nr<l2g—deg é
and call it a W {(§) gap sequence at P. It is clear that
M(1/6 P =M(1/s P*;7') (1=7=k).
P is called a W{3) Weierstrass point if
{71, gy o+eee y {1, 2, , R}.
We can choose a basis{¥;} of W () such that
r,eWe Py H—W(@ Pry)
for each j (1<j<k).
Let 6, and d§; be positive divisors such that
0=01/0s (0,=S51"1 Sg¥gr-er Ss”s, 0a=T Py ToPgeeee-r 7).

We consider the following three cases.

Case (i) Without loss of generality we may assume that f; can

be expanded as

s t
in a neighborhood of P ('_L% {S.}Hu (:J1 {T%}).

As an easy calculation shows the Wronskian can be expanded as
W(z) =A zB4 .- ,

where
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A=(—D* * 211 (ni—ny)

i<<j

and

&
B"—“Zl ni—k(k+1)/2.
J:

Case (ii) In a neighborhood of a point P=S., fjcan be expanded

as
r +n.—1

fj(z):z u J Aeeenn.
By the same process as (i) one computes

k
B=kru+Xn—k(k+1)/2.
—

Case (iii) In a neighborhood of a point P=7T. f; can be ex-

panded as
=t +n .1

fj (z):z voJ oereene .
A similar argument yields

k
B—= —ktv+21nj—k(k+1)/2.
j=

From the above three cases we can verify

nj—k(k+1)/2 k7'u+2nj—k(k+1)2

s s
(¢8> =II1P X Isu
Pi\fsu u=1

pxr,

! “kt +3n . ~kkTD/2
x117T, ° =

=1

—k(ETD2

—TIP%" N OLE
P

k
deg(®s) =31 ny—k(k+1)/2+k deg .
=

We denote by W[ ] the divisor
nj—k(k+l)/2

1p*
P

and call it a W () Weierstrass divisor. Then we can obtain the
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following equation.
deg Wl =—kdeg o+k(E+1)(g—1).

2. Estimates of the number N of W(5) Weierstrass point.

From the W (9) gap sequence at P :
0<n1<n2<'<2g—‘deg dJ.
we show that

k k
Sn;=>1(2g—deg d—7J)
J=1 =1
=k(2g—deg 0)—-k(k+1)/2.
k
Sni—k(B+1)/2<K(2g—deg 6 -1—Fk).

J=1

This implies that
deg W[d]=<N k(2g—deg 6—1—4F).
Suppose g=1 and £==2, then the right term of the above inequality

is positive. This insures that

—deg 6+ (k+1)(g-1) _ e B
2g—-deg 6—1—F =N=—Fk deg d+k(E+1)(g—1.

Moreover in this case we have
2N,
this guarantees the existence of plural W (g) Weierstrass points.
In particular, if 6=1 then k=degW(l)=g, and the above result
can be writtin as
g+1=N=g(g+1(g—-D.
This inequality is coarser than the Hurwitz inequality:
2(g+1)=N=g(g+bD(g—1).
Next we consider the following five special cases.

Case (i) When g=0, there exists no W (§) Weierstrass point.
Because, due to the Riemann-Roch’s theorem it turns out that
0=dim M(1/d) =k-+deg 6-+1.
k> —1—deg 4.
On the other hand, a necessary and sufficient condition for
deg W[ D> 0 is
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—deg d+(k+1(0—-1)>0.
This gives that
kR<_—-1-—deg 9,
which contradicts the above inequality.

Case (ii) When g=1, a necessary and sufficient condition of
existence of a W () Weierstrass point is deg §<-—1. First we prove
the necessity. For any Abelian differential o= W () it stands that
deg(w) =2g—2=0. Therfore deg ¢ >0 implies W) =0. This shows
by the assumption that deg 4=(0. While if deg =0 then

deg Wlé ] =—Fkx0+kk+1)(1-1)=0.
We turn to the proof of sufficiency. Using
0<<dim M(1/6)=Fk+deg ¢
we have k->—deg §-=0, which insures W () =0. Consequently, by
the fact that
deg W[o|=—Fk deg 5=Fk(—deg §)-1x1
we can conclude Wig 1.

Case (iii) When g=>1, a point T is a W({1/T) Weierstrass point.
We shall point out that the number N of W ({1/T) Weierstrass
points satisfies

g=N=g"
Because, due to kF=dim W{/T)=dim W({)=g we have
dim W 1/T =-—gxX(—1)-+g{g+1(g—1)=g°3.
In particular, when g=1 T is the only W (1/T) Weierstrass point.
On the other hand, if g2 then 2=2. This proves the inequality
g=N=g* by means of the preceding estimate of the number N.

Caes (iv) When .£—1, a necessary and sufficient condition of

existence of W (9) Weierstrass point is
g—2=deg 0 2g—2.

This can be demonstrated by the following two formulae.
0=<dim M((1/5)=1-+deg 6—g-+1.
0<deg W[sl=—deg 6+2(g—1).

Case (v) For a point S W(S) Weierstrass points have the pro-
perty
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deg W[S]=(g—D(g*—g—D.

3. Estimates of the number N of W (1/5;) Weierstrass points.

In this section we fix a positive divisor é: such that deg d:->2.
Since M(5:/P) =M (52) =0 it is easy to see that m:=1. Put
a=min{{1,2,3, - Y {929, gy -coeee , W)}
then a=2 is not a gap value. Hence there exists a meromorphic
function f such that
fEM(@:./ P — M(:/ P“™1).
If a integer n is not a gap value at P, then there exists a
meromorphic function g such that
8EM 65/ P7*) — M6/ P"™Y).
This shows that n+a is not a gap value according to the fact that
feEM(6?/ P P*) _M(6:/ P**%).
Aft=r the preceding observations the set of gap values at P can

be arranged as follows.

1, ,a+1 gt ,mla_i_.l ,

2.’ ,a+2 y e ’”22a+2 s

a—T, a4 (@—1), -eeeere: Mg+ (@—1),
where

a—1 a—1
SMSmp+D=S"mpy+a—1=k
p=1 p=1

and
mpa +P§2g~deg o—1 (1§p§a—1).
It follows from this that

m

k a-1 ‘p
2n;=2>1 > (qa+1)
~1 p=1 q=1

:ag‘l {a{mp<7’np+ 1)/2+ (W211+1>p}

b=1

:“\j (Moo )2/ 20— p2/ 2+ mpa )2 D).

1

kg

Using
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(mpa+p)i=(mpa+p)(2g—deg —1)
one can compute the following inequalities.

k
S ni<(4kg—2k—2k degd-+2g—deg é+2ak+adegd—2ag)/4
71

—(a—1)(a—2)/6
<k(2g—degd—1)/2+ (2g—degd)/A+alk—1)/4
—a(2g—degdé—1—Fk)/4
<{2k(2g—degd—1)+2g—degé+k(E—1D}/4
=(2k+1)2g—deg d)/4+kR(E—3)/4.

k
If 3 n;<F(k), where F(k) is independent of P, then the
=

preceding discussion enables us to give the estimate
—kdegoth(E+1)(g—1) .
Fk)—k(E+1)/2 -
In the case when
FR)=Qk+1)(2g—degd)/4+k(k—3)/4
we can establish the followong inequality due to dim W (1/d82)
=g-+deg d2—1.

IN<—kdego+kh(R+1)(g—-D.

. L A )
(ki gt (b—1r =V=Fg.

4, M(1/5) Weierstrass points.

For brevity of notation we set r=dim M(l/5). For a basis {;
(1<j<r) of M(1/5) we can consider the Wronskian along the
same line as the case of W(3), and obtain an Abelian differential
¥s of order r(r—1)/2, which satisfies

deg(¥Ts)=r(r—1)(g—1).
By the Riemann-Roch’s theorem one sees that
0<dim M(P»71/§) —dim M(P*/5)<1.
Following the fact that any meromorphic function f satisfies
deg (f) =0 we get a sequence of 2+degd spaces:
M(1/8) DM(P/d) D-v---- DM(PYiesd /5y =0.
By direct calculation we can select n;(1=7<#) such that

0<n1<1’l2< """ <nr<2+deg 5,
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where
dim M(P7;7Y/6) =dim M(P";/5) -+ 1.
We call the above sequence a M(1/6) gap value sequence at P.
We remark that
W/ P~ =W(a/P*;) A=ji<r).
P is said to be a M(1/6) Weierstrass point if
(1, 2, - 1) £ {1y, M, e Hr).
Let {f;} be meromorphic functions such that
freEMPr7/6) —M(P";/5) (A=7<7)
then {f;|1==7<r} is a basis of M (1/5).
In a neighborhood of P, f;j(z) has the following expression.

Case (1) fi(2) =zmtgemeee
where P (‘: {(S.}) . (C

u=1 e

,JI{TT}).

Case (ii) fi(z2) =z 7, n; g veneen ’
where P=S..

Case (iiil) fi(2) =z, "7 14 eeen ,
where P=T..
In much the same as the discussion of W () Weierstrass points

we can prove
(W) =T1P=")
P

—r{r+Ds2 5Ar

Define
M[1/5: :HP272].—7(7+1)/2
I

and we call it a M({1/6) Weierstrass divisor. It is not difficult
to see that
deg M1/ ]=rdego+r(r—1)(g—1).

5. Estimates of the number N of M (1/6) Weierstrass points.

By the same argument as that used in the estimate of the
number of W (3 Weierstrass points it is easy to calculate N as

follows.
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S > (2+degd—j).
= j=1

Sui—r(r+1)/2<r({degd+1—7).
J=1
c. deg M[1/6]=<Nr(degdé+1—r).
While, if g=1 and r=2, then the right term of the above
inequality is positive. So it is easy to check that

dego+(r—D(g—1) _ ; So(p
degdtl—7 <N< rdego+r(r—1)(g—1).
Moreover in this case it is apparent that N=2.

We shall observe the following three special cases.

Case (i) When g=0 we see
r—dego—1=dim W()=0.
On the other hand it stands that
deg M[1/6]=r(dego—7-+1),
which implies deg M[1/5]=0, that is, there exists no M(1/¢)
Weierstrass point.

Case (ji) When g=1, deg d=1 is a necessary and sufficient
condition of the existence of a M (1/5) Weierstrass point. First
we prove the necessity. Let f be a meromorphic function, then
deg (f)=0. Consequently, if deg(1/6)=1, then M (1/6) =0, which
is a contradiction. This proves deg §=0. If deg 6=0, then deg
MT[1/6]=0, which is impossible. Hence we find that deg d=1.
Next we prove the sufficiency. By the fact that

r=dim W) +deg o=1
we deduce that deg W _1/6]=r deg 0=1, which guarantees
Wll/6]=1.

Case (iii) When g=1, a point S is the only M(1/S) Weierstrass
point. Because, dim M (1/S) =dim M) =1 shows r=1. Thus degs
=deg S=1 proves deg M[1/6]=1x1=1.

This means that there exists the only M(1/S) Welerstrass point.
While,
if P=S, then M(1/S)=M(FP/S)=M(1),
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or
if Px=S, then M(Q/S) SM(P/S) =0,
Which shows that S is a M(1/S) Weierstrass point.

6. Relations between W () Weierstrass points and M (1/5)
Weierstrass points.
Using the three equations
r=k-+dego—g+1,
deg Wiol=—Fk degdo+k(E+1)(g—1)
and
degM[1/6 =7 degdo+r(r—1)(g—1)
we are able to prove that -
282 J? (deg W[él+deg MI[1/61)
=(deg Wlol—deg M[1/6])*(g—1 +g* ' (g+1),
where J=deg é—g+1.

In the remainning part we shall consider the case where g=2
and 6=S. In this case, J=0 insures deg W[(S]=deg M{1/S)1=1.
This means that there exists the only W(S) Weierstrass point.
Using M(1/S)=M(1) we get r=dim M()=1. Therefore by the
Riemann-Roch’s theorem one finds 2=dim W(S)=1. Following
this, the gap value at P is mi1=1 or n:=2.1t follows that W(S)
=W (SP) is a necessary and sufficient condition that Pis a W(S)
Weierstrass point. Note that W(S) =W (SP) yields M(1/SP) —
M(1/S)>¢. Therefore in order that Sis a W(S) Weierstrass point
it is necessary and sufficient that there exists a meromorphic
function which has the only singularity of order two at S. This
means that S is a Weierstrass point in the ordinary sense. Define
a mapping G by

G : S—P (Pis the W(S) Weierstrass point),

then G is an involution of hyperelliptic Riemann surface.
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