$W(\delta)$ Weierstrass points

Yukio HIRASHITA

(Received April 6, 1981)

The aim of this article is to generalize a notion of Weierstrass points. For any divisor δ we introduce $W(\delta)$ Weierstrass points and $M(1/\delta)$ Weierstrass points, and we estimate the numbers of these points. A W(1) Weierstrass point is a Weierstrass point in the ordinary sense, and a $M(1/\delta)$ Weierstrass point corresponds to a D Weierstrass point defined by means of

 $H^0(C, (\Omega^1) \otimes^{r(r-1)/2} (rD)$ in the algebraic geometry [2].

1. $W(\delta)$ Weierstrass points.

Let R be a closed Riemann surface of genus g and δ a divisor. Then we have the following Riemann-Roch's theorem.

dim
$$M(1/\delta) = \dim W(\delta) + \deg \delta - g + 1$$
.

Put $k=\dim W(\delta)$ and suppose $k\geq 1$. For a basis $\psi_j=f_j(z)$ dz $(1\leq j\leq k)$ of $W(\delta)$ we write

$$W(z) = egin{array}{ccccc} f_1(z) & f_2(z) & f_k(z) \ W(z) = f_1^{(1)}(z) & f_2^{(1)}(z) & f_k^{(1)}(z) \ & f_1^{(k-1)}(z) & f_2^{(k-1)}(z) & f_k^{(k-1)}(z) \end{array} .$$

The above Wronskian defines an Abelian differential Φ_{δ} of order k(k+1)/2, which is independent of a choice of a basis. Consequently we obtain

$$\deg(\Phi_{\delta}) = k(k+1)(g-1).$$

By the Riemann-Roch's theorem one computes that

$$\dim\ M(1/\delta\ P^{n-1})\!=\!\dim\ W(\delta\ P^{n-1})\!+\!\deg\delta\!+\!(n\!-\!1)\!-\!g\!+\!1$$
 and

$$\dim\ M(1/\delta\ P^n)\!=\!\dim\ W(\delta\ P^n)\!+\!\deg\ \delta\!+\!n\!-\!g\!+\!1.$$

This insures

$$\dim M(1/\delta P^{n-1}) - \dim M(1/\delta P^n) = \dim W(\delta P^{n-1})$$
$$-\dim W(\delta P^n) - 1.$$

It is easily checked that

$$M(1/\delta P^n) \supset M(1/\delta P^{n-1})$$
 and $W(\delta P^{n-1}) \supset W(\delta P^n)$.

As an easy calculation shows

$$0 \le \dim W(\delta P^{n-1}) - \dim W(\delta P^n) \le 1.$$

For each Abelian differential ω we have $\deg(\omega) = 2g - 2$. It is easy to see that $W(\delta p^m) = 0$ where $m = 2g - \deg \delta - 1$. This guarantees that there exist k spaces $W(\delta p^n)$ $(1 \le j \le k)$ such that

$$\dim W(\delta P^{n_j-1}) = \dim W(\delta P^{n_j}) + 1$$

in the sequence

$$W(\delta) \supset W(\delta P) \supset \cdots \supset W(\delta P^m) = 0.$$

We write

$$0 < n_1 < n_2 < \cdots < n_k < 2g - \deg \delta$$

and call it a $W(\delta)$ gap sequence at P. It is clear that $M(1/\delta \ P^{n_j}) = M(1/\delta \ P^{n_j-1}) \ (1 \le j \le k)$.

P is called a $W(\delta)$ Weierstrass point if

$$\{n_1, n_2, \dots, n_k\} \rightleftharpoons \{1, 2, \dots, k\}.$$

We can choose a basis $\{\Psi_j\}$ of $W(\delta)$ such that

$$\Psi_{j} \in W(\delta P^{n_{j}-1}) - W(\delta P^{n_{j}})$$

for each j $(1 \leq j \leq k)$.

Let δ_1 and δ_2 be positive divisors such that

$$\delta = \delta_1/\delta_2 \quad (\delta_1 = S_1^{r_1} S_2^{r_2} \cdots S_s^{r_s}, \ \delta_2 = T_1^{p_1} T_2^{p_2} \cdots T_t^{p_t}).$$

We consider the following three cases.

Case (i) Without loss of generality we may assume that f_j can be expanded as

$$f_j(z) = z^{n_j-1} + \cdots$$

in a neighborhood of $P \oplus (\bigcup_{u=1}^s \{S_u\}) \cup (\bigcup_{v=1}^t \{T_v\}).$

As an easy calculation shows the Wronskian can be expanded as

$$W(z) = A z^B + \cdots$$

where

$$A = (-1)^{k(k-1)/2} \prod_{i < j} (n_i - n_j)$$

and

$$B = \sum_{j=1}^{k} n_j - k(k+1)/2.$$

Case (ii) In a neighborhood of a point $P=S_u$, f_j can be expanded as

$$f_j(z) = z^{r_u+n_j-1} + \cdots$$
.

By the same process as (i) one computes

$$B = kr_u + \sum_{j=1}^{k} n_j - k(k+1)/2.$$

Case (iii) In a neighborhood of a point $P=T_v$, f_j can be expanded as

$$f_j(z) = z^{-t_v + n_j - 1} + \cdots$$

A similar argument yields

$$B = -kt_v + \sum_{j=1}^{k} n_j - k(k+1)/2.$$

From the above three cases we can verify

$$(\boldsymbol{\Phi}_{\delta}) = \prod_{P \neq S_{u}} P^{\sum n_{j} - k(k+1)/2} \times \prod_{u=1}^{s} s_{u}^{kr_{u} + \sum n_{j} - k(k+1)/2} \times \prod_{v=1}^{s} T_{v}^{\sum n_{j} - k(k+1)/2} \times \prod_{v=1}^{t} T_{v}^{-kt_{v} + \sum n_{j} - k(k+1)/2} \times \prod_{v=1}^{t} P^{\sum n_{j} - k(k+1)/2} \times \delta^{k}.$$

$$\therefore \deg(\boldsymbol{\Phi}_{\delta}) = \sum_{j=1}^{k} n_j - k(k+1)/2 + k \deg \delta.$$

We denote by $W[\delta]$ the divisor

$$\prod_{\mathbf{p}} P^{\sum n_j - k(k+1)/2}$$

and call it a $W(\delta)$ Weierstrass divisor. Then we can obtain the

following equation.

$$\operatorname{deg} W[\delta] = -k\operatorname{deg} \delta + k(k+1)(g-1).$$

2. Estimates of the number N of $W(\delta)$ Weierstrass point.

From the $W(\delta)$ gap sequence at P:

$$0 < n_1 < n_2 < \cdots < 2g - \deg \delta$$
.

we show that

$$\sum_{j=1}^{k} n_j \leq \sum_{j=1}^{k} (2g - \deg \delta - j)$$

$$= k(2g - \deg \delta) - k(k+1)/2.$$

$$\therefore \sum_{j=1}^{k} n_j - k(k+1)/2 \leq K(2g - \deg \delta - 1 - k).$$

This implies that

$$\operatorname{deg} W[\delta] \leq N k(2g - \operatorname{deg} \delta - 1 - k).$$

Suppose $g \ge 1$ and $k \ge 2$, then the right term of the above inequality is positive. This insures that

$$\frac{-\text{deg }\delta + (k+1)(g-1)}{2g-\text{deg }\delta - 1 - k} \leq N \leq -k \text{ deg }\delta + k(k+1)(g-1).$$

Moreover in this case we have

$$2 \leq N$$

this guarantees the existence of plural $W(\delta)$ Weierstrass points. In particular, if $\delta=1$ then $k=\deg W(1)=g$, and the above result can be writtin as

$$g+1 \le N \le g(g+1)(g-1)$$
.

This inequality is coarser than the Hurwitz inequality:

$$2(g+1) \leq N \leq g(g+1)(g-1)$$
.

Next we consider the following five special cases.

Case (i) When g=0, there exists no $W(\delta)$ Weierstrass point. Because, due to the Riemann-Roch's theorem it turns out that $0 \le \dim M(1/\delta) = k + \deg \delta + 1$.

$$k \ge -1 - \deg \delta$$
.

On the other hand, a necessary and sufficient condition for $\deg W[\delta] > 0$ is

$$-\text{deg } \delta + (k+1)(0-1) > 0.$$

This gives that

$$k < -1 - \deg \delta$$
,

which contradicts the above inequality.

Case (ii) When g=1, a necessary and sufficient condition of existence of a $W(\delta)$ Weierstrass point is $\deg \delta \leq -1$. First we prove the necessity. For any Abelian differential $\omega \in W(\delta)$ it stands that $\deg(\omega) = 2g - 2 = 0$. Therfore $\deg \delta > 0$ implies $W(\delta) = 0$. This shows by the assumption that $\deg \delta \leq 0$. While if $\deg \delta = 0$ then

$$\deg W[\delta] = -k \times 0 + k(k+1)(1-1) = 0.$$

We turn to the proof of sufficiency. Using

$$0 \le \dim M(1/\delta) = k + \deg \delta$$

we have $k \ge -\text{deg } \delta \ge 0$, which insures $W(\delta) \ne 0$. Consequently, by the fact that

$$\operatorname{deg} W[\delta] = -k \operatorname{deg} \delta = k(-\operatorname{deg} \delta) \ge 1 \times 1$$

we can conclude $W[\delta] \neq 1$.

Case (iii) When $g \ge 1$, a point T is a W(1/T) Weierstrass point. We shall point out that the number N of W(1/T) Weierstrass points satisfies

$$g \leq N \leq g^3$$
.

Because, due to $k=\dim W(1/T)=\dim W(1)=g$ we have

dim
$$W[1/T] = -g \times (-1) + g(g+1)(g-1) = g^3$$
.

In particular, when g=1 T is the only W(1/T) Weierstrass point. On the other hand, if $g\geq 2$ then k=2. This proves the inequality $g\leq N\leq g^3$ by means of the preceding estimate of the number N.

Caes (iv) When k=1, a necessary and sufficient condition of existence of $W(\delta)$ Weierstrass point is

$$g-2 \leq \deg \delta < 2g-2$$
.

This can be demonstrated by the following two formulae.

$$0 \le \dim M(1/\delta) = 1 + \deg \delta - g + 1.$$

$$0 < \text{deg } W[\delta] = -\text{deg } \delta + 2(g-1).$$

Case (v) For a point S W(S) Weierstrass points have the property

$$\deg W[S] = (g-1)(g^2-g-1).$$

3. Estimates of the number N of $W(1/\delta_2)$ Weierstrass points.

In this section we fix a positive divisor δ_2 such that deg $\delta_2 \ge 2$. Since $M(\delta_2/P) = M(\delta_2) = 0$ it is easy to see that $n_1 = 1$. Put

$$\alpha = \min\{\{1, 2, 3, \dots\} - \{n_1, n_2, \dots, n_k\}\}$$

then $\alpha \ge 2$ is not a gap value. Hence there exists a meromorphic function f such that

$$f \in M(\delta_2/P^{\alpha}) - M(\delta_2/P^{\alpha-1}).$$

If a integer n is not a gap value at P, then there exists a meromorphic function g such that

$$g \in M(\delta_2/P^n) - M(\delta_2/P^{n-1}).$$

This shows that $n+\alpha$ is not a gap value according to the fact that $fg \in M(\delta_2^2/P^nP^\alpha) \subset M(\delta_2/P^{n+\alpha})$.

After the preceding observations the set of gap values at P can be arranged as follows.

$$\begin{cases} 1, & , \alpha+1 & , \cdots \cdots, m_{1}\alpha+1 & , \\ 2, & , \alpha+2 & , \cdots \cdots, m_{2}\alpha+2 & , \\ \vdots & & \\ \alpha-1, \alpha+(\alpha-1), \cdots \cdots, m_{\alpha-1}+(\alpha-1), \end{cases}$$

where

$$\sum_{p=1}^{\alpha-1} (m_p + 1) = \sum_{p=1}^{\alpha-1} m_p + \alpha - 1 = k$$

and

$$m_p \alpha + p \leq 2g - \text{deg } \delta - 1 \quad (1 \leq p \leq \alpha - 1).$$

It follows from this that

$$\sum_{j=1}^{k} n_{j} = \sum_{p=1}^{\alpha-1} \sum_{q=1}^{m_{p}} (q\alpha+1)$$

$$= \sum_{p=1}^{\alpha-1} \{\alpha m_{p}(m_{p}+1)/2 + (m_{p}+1)p\}$$

$$= \sum_{p=1}^{\alpha-1} \{m_{p}\alpha+p)^{2}/2\alpha-p^{2}/2\alpha+m_{p}\alpha/2+p\}.$$

Using

$$(m_p\alpha+p)^2 \leq (m_p\alpha+p)(2g-\deg \delta-1)$$

one can compute the following inequalities.

$$\sum_{j=1}^{k} n_{j} \leq (4kg - 2k - 2k \operatorname{deg} \delta + 2g - \operatorname{deg} \delta + 2\alpha k + \alpha \operatorname{deg} \delta - 2\alpha g)/4$$

$$-(\alpha - 1)(\alpha - 2)/6$$

$$\leq k(2g - \operatorname{deg} \delta - 1)/2 + (2g - \operatorname{deg} \delta)/4 + \alpha(k - 1)/4$$

$$-\alpha(2g - \operatorname{deg} \delta - 1 - k)/4$$

$$\leq \{2k(2g - \operatorname{deg} \delta - 1) + 2g - \operatorname{deg} \delta + k(k - 1)\}/4$$

$$= (2k + 1)(2g - \operatorname{deg} \delta)/4 + k(k - 3)/4.$$

If $\sum_{j=1}^{k} n_j \leq F(k)$, where F(k) is independent of P, then the

preceding discussion enables us to give the estimate

$$-k \deg \delta + k(k+1)(g-1) \le N \le -k \deg \delta + k(k+1)(g-1).$$

In the case when

$$F(k) = (2k+1)(2g-\deg \delta)/4 + k(k-3)/4$$

we can establish the followong inequality due to dim $W(1/\delta_2)$ = $g+\deg \delta_2-1$.

$$\frac{4k^2g}{(2k+1)g+(k-1)^2} \le N \le k^2g.$$

4. $M(1/\delta)$ Weierstrass points.

For brevity of notation we set $r=\dim M(1/\delta)$. For a basis f_j $(1 \le j \le r)$ of $M(1/\delta)$ we can consider the Wronskian along the same line as the case of $W(\delta)$, and obtain an Abelian differential Ψ_{δ} of order r(r-1)/2, which satisfies

$$\deg(\Psi\delta) = r(r-1)(g-1).$$

By the Riemann-Roch's theorem one sees that

$$0 \leq \dim M(P^{n-1}/\delta) - \dim M(P^n/\delta) \leq 1.$$

Following the fact that any meromorphic function f satisfies deg(f) = 0 we get a sequence of $2 + deg \delta$ spaces:

$$M(1/\delta) \supset M(P/\delta) \supset \cdots \supset M(P^{1+\deg\delta}/\delta) = 0.$$

By direct calculation we can select $n_j(1 \le j \le r)$ such that $0 < n_1 < n_2 < \cdots < n_r < 2 + \deg \delta$,

where

$$\dim M(P^{n_j-1}/\delta) = \dim M(P^{n_j}/\delta) + 1.$$

We call the above sequence a $M(1/\hat{o})$ gap value sequence at P.

We remark that

$$W(\delta/P^{n_{j}-1}) = W(\delta/P^{n_{j}}) \qquad (1 \leq j \leq r).$$

P is said to be a $M(1/\delta)$ Weierstrass point if

$$\{1, 2, \dots, r\} \neq \{n_1, n_2, \dots, n_r\}.$$

Let $\{f_j\}$ be meromorphic functions such that

$$f_j \in M(P^{n_j-1}/\delta) - M(P^{n_j}/\delta) \qquad (1 \leq j \leq r)$$

then $\{f_j | 1 \leq j \leq r\}$ is a basis of $M(1/\delta)$.

In a neighborhood of P, $f_j(z)$ has the following expression.

Case (i)
$$f_{j}(z) = z^{n_{j}-1} + \cdots$$

where
$$P \!\! \in \! igl(igcup_{u=1}^s \{S_u\} igr) \cup \! igl(igcup_{v=1}^t \{T_v\} igr).$$

Case (ii)
$$f_j(z) = z^{-r} u^{+n} j^{-1} + \cdots$$
,

where $P=S_n$.

Case (iii)
$$f_j(z) = z^t v^{+n} j^{-1} + \cdots$$
,

where $P=T_v$.

In much the same as the discussion of $W(\delta)$ Weierstrass points we can prove

$$(\Psi \delta) = \prod_{p} P^{\sum n_j - r(r+1)/2}. \ \delta^{-r}.$$

Define

$$M[1/\delta] = \prod_{P} P^{\sum n_j - r(r+1)/2}$$

and we call it a $M(1/\delta)$ Weierstrass divisor. It is not difficult to see that

$$\deg M[1/\delta] = r \deg \delta + r(r-1)(g-1).$$

5. Estimates of the number N of $M(1/\delta)$ Weierstrass points.

By the same argument as that used in the estimate of the number of $W(\delta)$ Weierstrass points it is easy to calculate N as follows.

$$\sum_{j=1}^{r} n_{j} \leq \sum_{j=1}^{r} (2 + \text{deg } \delta - j).$$

$$\therefore \sum_{j=1}^{r} n_j - r(r+1)/2 \leq r(\deg \delta + 1 - r).$$

 $\therefore \deg M[1/\delta] \leq Nr(\deg \delta + 1 - r).$

While, if $g \ge 1$ and $r \ge 2$, then the right term of the above inequality is positive. So it is easy to check that

$$\frac{\deg \delta + (r-1)(g-1)}{\deg \delta + 1 - r} \leq N \leq r \deg \delta + r(r-1)(g-1).$$

Moreover in this case it is apparent that $N \ge 2$.

We shall observe the following three special cases.

Case (i) When g=0 we see

$$r$$
-deg δ -1=dim $W(\delta) \ge 0$.

On the other hand it stands that

$$\deg M[1/\delta] = r(\deg \delta - r + 1),$$

which implies deg $M[1/\delta] \leq 0$, that is, there exists no $M(1/\delta)$ Weierstrass point.

Case (ii) When g=1, deg $\delta \ge 1$ is a necessary and sufficient condition of the existence of a $M(1/\delta)$ Weierstrass point. First we prove the necessity. Let f be a meromorphic function, then deg (f)=0. Consequently, if $\deg(1/\delta)\ge 1$, then $M(1/\delta)=0$, which is a contradiction. This proves deg $\delta \ge 0$. If deg $\delta = 0$, then deg $M[1/\delta]=0$, which is impossible. Hence we find that deg $\delta \ge 1$. Next we prove the sufficiency. By the fact that

$$r = \dim W(\delta) + \deg \delta \ge 1$$

we deduce that deg $W[1/\delta]=r$ deg $\delta \ge 1$, which guarantees $W[1/\delta] \ne 1$.

Case (iii) When $g \ge 1$, a point S is the only M(1/S) Weierstrass point. Because, dim $M(1/S) = \dim M(1) = 1$ shows r = 1. Thus $\deg \delta = \deg S = 1$ proves $\deg M[1/\delta] = 1 \times 1 = 1$.

This means that there exists the only M(1/S) Weierstrass point. While,

if
$$P=S$$
, then $M(1/S) = M(P/S) = M(1)$,

or

if $P \neq S$, then $M(1/S) \supset M(P/S) = 0$, Which shows that S is a M(1/S) Weierstrass point.

6. Relations between $W(\delta)$ Weierstrass points and $M(1/\delta)$ Weierstrass points.

Using the three equations $r=k+\deg\delta-g+1$, $\deg W[\delta]=-k\deg\delta+k(k+1)(g-1)$ and $\deg M[1/\delta]=r\deg\delta+r(r-1)(g-1)$ we are able to prove that $2g^2J^2(\deg W[\delta]+\deg M[1/\delta])=(\deg W[\delta]-\deg M[1/\delta])^2(g-1)+g^2J^4(g+1)$, where $J=\deg\delta-g+1$.

In the remaining part we shall consider the case where g=2 and $\delta=S$. In this case, J=0 insures deg $W[S]=\deg M[1/S]=1$. This means that there exists the only W(S) Weierstrass point. Using M(1/S)=M(1) we get $r=\dim M(1)=1$. Therefore by the Riemann-Roch's theorem one finds $k=\dim W(S)=1$. Following this, the gap value at P is $n_1=1$ or $n_2=2$. It follows that W(S)=W(SP) is a necessary and sufficient condition that P is a W(S) Weierstrass point. Note that W(S)=W(SP) yields $M(1/SP)-M(1/S) \approx \phi$. Therefore in order that S is a W(S) Weierstrass point it is necessary and sufficient that there exists a meromorphic function which has the only singularity of order two at S. This means that S is a Weierstrass point in the ordinary sense. Define a mapping G by

 $G: S \longrightarrow P$ (P is the W(S) Weierstrass point), then G is an involution of hyperelliptic Riemann surface.

References

- [1] L. Ahlfors and L. Sario. Riemann surfaces, Princeton Univ. Press, 1960.
- [2] S. Iitaka, Algebraic geometry, Iwanami, 1973.
- [3] Y. Kusunoki, Contributions to Riemann-Roch's theorem, Mem. Coll. Sci. Univ. Kyoto 30 (1956), 1-22.