An Extension of the CTR Extension of

Holt-Winters Exponential Smoothing

Ronald D. Notestine
Faculty of Management
Chukyo University

Introduction

Cipra et al presented an extension to Holt-Winters method of exponential smoothing for
the case of incomplete seasonal data [Cipra et. al. 1995]. The method follows a suggestion of
Wright [Wright 1986], for interpolating, smoothing, and predicting seasonal data when data
collection has been irregular. The details of the method, and an implementation of it using
the Mathematica programming language was given in an earlier paper [Notestine 1995]. An
obvious possible extension to this method is to smooth both forward and backward in time,
rather than just forward. The author has not found any references in the literature to such an
extenson. In this paper, a simple extension of the method smoothing both forward and back-

ward is introduced.

BiDirectional Exponential Smoothing

First, a few words about exponential smoothing. In the earler paper referred to above, I
described exponential smoothing
“Smoothing techniques are commonly used v — v
[ooning e ’ Yin = 0¥y + (1-0)Y,
in business and industry both for forecast- - — —~
ing, as well as for attempting to discern the Yt+1 = Yt + (X.(Y t™ Yf)

‘true’ path of some variable amidst the Figure 1

noise of a somewhat random world. Among

the various smoothing methods, exponential smoothing is among the most popular [Gardner
1985]. Exponential models are relatively simple to set up, and readily amenable to computer-
ization. According to Gardner, the ‘surprising accuracy’ of exponential smoothing models
may be the primary reason for their great popularity.”

In exponential smoothing, the forecast for any particular time is a weighted average of all

— 45 =

CHUKYO KEIEIKENKYU

of the past values. Thus, exponential smoothing is a variety of moving average. It is called
exponential smoothing, because the weights assigned to each of the past values declines geo-
metrically. (That is, according to an exponent given by the number of periods separating the

forecast time and the past value in question.)”

This is illustrated in Figure 2, which shows a | 1000 . — — 4
hypothetical series of data.. Suppose we wish to 800 ::::o't’i': to be
smooth the data for t=15. We take a weighted aver- e 3 j L B
age of the actual data for t=15, and the data preced- | “f o wmm o oioms
ing t=15. The weights assigned to the preceding 20: IIE &‘Z"ﬁ?:’,”"’ 6:':

] 5 10 15 20 25 30 35

data decline geometrically with their distance in Figure 2 Normal Smoothing

time from t=15. The relative weight to be assigned
to the current data and to the past data is a parameter. The figure does not show the weight
assigned to the data of t=15, but rather the manner in which the weights assigned the previ-
ous smoothed data points declines geometrically with distance in time.

One question that can be asked of the normal methods of smoothing is : Why just use
data from the past? The reason we smooth at all is that we believe that the phenomena pro-
ducing the data change slowly with respect to the time scale at which we collect it, and that
much of the short scale variaton is dominated by noise. But, if this is so, then these phenom-
ena will change little for time after the data point in question, as well time before. (In any
case, once we do the analysis, it is ALL time past!) In fundamental physical theory, there is
nothing to distinguish the flow of time. All phenomena are theoretically reversible, and flow
with the arrow of time reversed is just as theoretically possible as that with the normal flow
of time. Of course, in cases such as the scrambling of eggs, the difficulty of reversal

becomes more than trivial. However, returning to a more realistic example, if an economic

time series is being driven up by slowly varying 1000 — — 1
inflation rate, then we have every reason to believe 800 Data Point to be
] Smoothed
that “future” values will be every bit as valuable wof [. .
. . 3 a0f T° T -SRI,)
in smoothing a data point or estimating a missing elght of prioms in
200 estimating smoothed data
data point as the past data. : l m {scale of O to 1)]
0
This is illustrted in Figure 3. In this case the ©orowomomomoe B
Figure 3 BiDirectional Smoothing

date point is smoothed using a weighted average
of smoothed values in both directions. The weighting factors decrease geometrically with

distance form the time in question.

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

The Implementation

An objection to the description as literally given above, is that it requires smoothed val-
ues to be used before they have been smoothed! That is before we can smooth for time 15,
we need to smooth for time 16, which requires we smooth for time 15 etc. The most obvious
solution is to smooth forward in the normal way, reverse the data and smooth it “forward”,
and then comine the results. That is the method used here.

By taking a mean of the forward and backward smoothings, the result is exactly that
illustrated above, contributions decrease geometrically both forward and backward in time
from the point being smoothed. An objection to this would concern the end regions.
Smoothing at the beginning of the data is less accurate because it is based on less data. Near
the end of the data, a smoothed value is based on contributions from much more data, and, if
the smoothing method is justified, should be more accurate. This in fact can be seen with
artificial test data sets, where the smoothed values for the early data are systematically
“pulled away” from the observed data. Given this, it seems reasonable to believe that a fil-
ter combining information both forward and backward in time, but reducing the influence in
one direction as the ends of the data set are approached might be reasonable.

The method has been implemented in the Mathhematica programming language. This
allows considrable flexiblilty in the analyysis, and the aﬁtomaitcc creation of variable names
to hold results. The implementation used was designed for clarity and flexibility and is not

yet optimised for efficiency.

Some Results

In order to see an example of the method applied, we use a data set of the number of pas-
senger airline miles flown in the United Kingdom from January 1949 to December 1960.
This is a much used data set consisting of twelve years of well-behaved, seasonal data.

We examine the method in two situations : No data missing, that is we smooth on the
entire data set, and see how forward smoothing only compares with smoothing in both direc-
tions in time. Second, we randomly remove data from the set to simulate a situation of miss-
ing data, but using actual data to do so.

Situation 1 : All data smoothed. Fugure 4 shows the raw data, with the data points con-

nectd by straight lines for clarity. Figure 5 shows the same data after the application of for-

CHUKYO KEIEIKENKYU

ward smoothing according to the CTR method.

Airline Passcoger miles flowa in UK
from Januscy 1949 to December 1961
{144 months)

600

In this case, however, only the dots represent w00

smoothed values, the lines are the lines of the w0
raw values. To differentiate the smoothed dots 300
of figure 5 from the raw of figure 4, the 200

smoothed dots have been Sllghﬂy enlarged and 100 49 50 51 52 53 5& 55 56 57 58 59 60

rendered in gray. As can be seen, the figure, Figure 4 Airline Data (no smoothing)

the smoothed values follow the raw data quite

closely. This indicates that it might be diffi- 600

cult to improve upon the fit by further smooth- 500

400
ing. Indeed, as can be seen by looking at the 300

Root Mean Square Errors for smoothing for- 2008 o
100 {FYXT 9

ward in time only, and for smoothing in both

49 50 51 52 53 54 55 56 57 58 59 60

directions in time, the improvement from
Figure 5 Airline Data

smoothing in both directions is slight. In fact, no missing data, but smoothed
this improvement appears to come entirely mﬁzg‘;’c’:ﬁ:&) - PPt
from the fact that this set seems to “smooth TSk (BiDirectional) = 0-5192
better” in a backward directioh, as can be seen
by looking at the value of the root mean square _
error for smoothing backwards in time. ::: P

Situation 2 : a total of 24 points of data a0
have been randomly set to missing (ie “M” 200

200 |

was subsituted for the actual data for 24 ran-
100 p

domly chosen months.) The only restriction on

o} —a

49 50 51 52 53 54 S5 56 57 58 59 60

Figure 6 Airline Data

the months chosen is that they could not be in

either the first two or last two years. This is a with missing data (circles) smoothed
very unrealisitc restriction, of course. But it is RMSE (Forward) = 4.3803

RMSE (Backward) = 5.0802
plausible that it provides an advantageous situ- RMSE (BiDirectional) = 1.9406

ation for the bi-directional amoothing method.

If the method cannot pass muster here, it is unlikiely to do so if there were no restrictions on
the months chosen. So, we make this a first test. As can be seen, the root mean square error
for the bidirectional smoothing is less than half of either of the forward or backward cases.

An anomoly must be mentioned here, however. There appears to be a characteristic of this

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

data that drives the forward smoothed value for month 104 (August 1957) to negative levels
(-22), and the following month to less than half the actual value (about 170 for 400 plus).
The reason should be investigated in the future to find out if this is merely “local
andmoly", or a more serious instability in the method. In the meantime, the single value for
August 1957 was averaged with the preceding and fbllowing smoothed values. Having done
this, the result is illustrated in Figure 6, where the dots are the smoothed values, circles indi-

cate missing values, and the lines graph the original data.

Concluusion

The testing done above is preliminary and tentative only. Many more cases with many
more reptitions would be needed to provide any confidence at all on an ad hoc basis. This is
left for future work. The program listing, including a superset of the functions needed for

this analysis is listed below.

(* *kk khkk kkhkk Kkhkk []‘berCTR *kk hhkk Kkkk Kkk *)
(* *kk Kkkk *kk kkik%k 'U’berCTR *kkhk Khhk*x kkhk k%% *)
(* *kk kkk kkk Kk*k [JberCTR *kk *hkk hkk k%% *)
Clear [UberCTR]

Options [UberCTR] =
{period->12,
smoothingExponents->{.4, .1, .4},
variableSuffix->None,
predictAhead->0
};

UberCTR [dataMat_?MatrixQ, opts _ Rule] :=
Module[{data,p, len,a,g,d, accu,pred,
varsuf, forwSuf, backSuf,
vhFvhF, vhByhB, yhDyhD, yvector,
vhFvector, yvhBvector, yhDvector,
vhPvector, predTable},
data=dataMat;
len = Length[datal;
p = period /. {opts} /. Options[UberCTR];

CHUKYO KEIEIKENKYU

{a,g,d} = smoothingExponents /.
{opts} /. Options[UberCTR];

(* nbr of digits of accuracy to keep *)
accu = Max|[3,2+Round@Log[10.,Max@ (yData/@observed|[datal)]];
(* if y-data is Real, reduce digits *)

If [MemberQ[Head/@yData/@data, Reall],
(* then reduce digits of y-data *)
data =
{year [#] ,month[#] ,N[yData[#],accul] }&/@data
(* else continue *)
1;
(* How many months of predictions for y-hat? *)
pred = predictdhead /. (* default = 0 *)
{opts} /. Options{UberCTR];
If[Head[pred]=!=Integer,
(* then *)
Print [StringForm{
“Option predictAhead is ', it must be type Integer!”,
predictAhead
11
pred=Input [“"Type an Integer for months to predictAhead”]
(* else continue *)
1;
varSuf = (variableSuffix /. (* default = “7 ¥*)
{opts} /. Options{[UberCTR])//ToString;
(* Include varSuf in Global ‘Suffixlist’ *)
SuffixList=Append[SuffixList,varSuf]//Union;
(* Create new Globals, set locals to them *)
setNames [yhFyhF, yhByhB, yhDyhD, varSuf] ;
{(* Suffixes used in calling CTR *)
forwSuf = StringJoin[“F”,varSuf];
backsSuf = StringJoin(“B”,varSuf];
(* Name the y-data wvector *)
yvector = yDatal[data//Transpose];
(* Smooth Forward *)
yvhFvector = (
Print [“yhFvector”];
CTR[data,
periodCTR->p,
smoothingExponents->{a,g,d},

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

variableSuffix->forwSuf
1//N[#,accul &
)
(* Smooth Backward *)
yhBvector = (
Print[“yhBvector”];
CTR[reverseDatal[datal,
periodCTR->p,
smoothingExponents->{a, g, d},
variablesSuffix->backSuf
1//Reverse//N[#,accul&

)i

(* Take Goemetric Mean of F & B smoothings *)
vhDvector = Sqgrt[yhFvector yhBvector]//N[#,accul&;

(* Predict requested number of months *)
vhPvector = Table[YH[data,n, forwSuf], {n,len+l,pred}];
predTable

Tablel[
{year[data,mon,p],

mon,
\\PII ,
YH[data,mon, forwSuf],

w_w»

1,
{mon, len+1, len+pred}
1;
Do[Print [predTable[[n]]], {n,Length[predTable] }1;
(* Create Output Table *)
Join[
Transpose [

Join|
data//Transpose,
{yhFvector,

yvhBvector,
yhDvector}

]

1,
predTable

CHUKYO KEIEIKENKYU

(*
(*
(*

(*
(*
(*
(*
(*
(*
(*

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

* k% END *kkk Kkx%x UberCTR *kkk kk% END * k%
* k% END *kk Khkx UberCTR *k%k kk%k END * Kk
* kk END *kk Fxk UberCTR *k*k *k*%k END * k%

*kk Khkk Kk*k CTR kkx *Kkk *k%k *)

Function to call the rest
Note, this function does no smoothing *)
it calculates all info needed to smooth

yv-hats must be calculated separately *)

*kk kkhkk Kk*k CTR *kk Kkkk Kkkk *)

% * Globals Defined by CTR *** **%%*)
Defines symbols with names constructed*)
by joining the characters in the list *)
just below a suffix supplied by the
user. The suffix is specified by the
option ‘variableSuffix’. The default is
‘variableSuffix->None’. If a suffix is*)
specified by the user, it must be a
String. eg ‘variableSuffix->"f”’. If the
head is not String, the user is scblded
and the option is reset to ‘None’

*)
List of lead chars for names:

*)
{t, s, v. U, V, W, S1, Tr, Id}

*)

tlk] = Months w/ Observations

s[k] = Months w/o Observations

vik] = Data for month k

Ulk] = vLevel Smoothng Factor *)
VIik] = Trend Smoothng Factor *)
wlk] = Seasonal Smoothng Factor *)

*)

hkkhkk Khkhkk Khkhkh Fhkhk khkk khkk khkhkkk khkk khkk

_.52 -

*)

*)

*)

*)

*)
*)
*)
*)

*)

*)
*)
*)

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

Needs[“Utilities FilterOptions ”];
Clear [CTR, period, smoothingExponents] ;
~ Options[CTR] =

{variableSuffix->None,
periodCTR->12,
smoothingExponents->{0.4,0.1,0.4}
}:

CTR[data_?MatrixQ, opts_ Rule]:=
Module]|
{dataObs,dataMis, numObs, p, a,g,d, varsSuf,
tt,ss,yy, 8181, TrTr, Id1Id, UU,VV, WW, vhyh,
len},
dataObs = observed[datal];
dataMis = missing[datal;
len = Length[data];
numObs = Length[dataObs];
{a,g,d} = smoothingExponents /.
{opts} /. Options[CTR];
varsuf = variableSuffix /.
{opts} /. Options[CTR];
P = preriodCTR /. {opts} /. Options[CTR];

(* error checking *)
(* Does data include rep of each month *)
If{

MemberQ [groupByMonth [datalbs,pl, {}],
(* then scold and abort! *)
Print [StringFormf{
“The following months have no data: ",
Position[groupByMonth[dataObs,p]l, {}]//Flatten
11;
Return[$Abort]
(* else continue *)
1;
(* Is varSuf a string? *)
If[! (StringQ[varSuf] || varSuf===None),
(* then, if NOT a string, do: *)
Print [StringForml[
“‘variableSuffix’ is ~°, it must be a string!”,

varsSuf

CHUKYO KEIFIKENKYU

11;

Print[“Variables will be given NO suffix.”];
varSuf = None

(* else do nothing *)
1:

(* END error checking
Whichl[

varSuf === None,

*)

setNames [
tt,ss,yy,S151, TrTr, IdId, UU,VV,WW, yvhyh
(* no suffix *)
1,
True,
setNames [
tt,ss,yv,S1S81, TrTr, IdId, UU, VV, WW, yvhvh,

varSuf (* suffix *)

1;
(* * k% \tlllslllyl * k% *)
IndexTimePeriodsAndData [
data,
tt,ss, vy,
p
1i
(* * k% ‘Sl','Tr’,’Id’ * k * *)
InitializeIndices| '
data,
YY.
S1s8l,TrTr, IdId,
b
1;
(x H*xx U, v, W * 4k *)
InitializeSmoothingCoefficients|
dataObs,
Uy, WV, Wi,
b,
{a,g,d}
1:
(* Sets Rest of 'U’,’'V’,'W’ *)

SetSmoothingCoefficients|

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

data,

tt,

uu, vV, Ww,

b,

{a,g,d}
1;

(* Sets Rest of ‘Sl1l’,'Tr’,’'Id’ *)
SetAdjustmentIndices|

data,

joF

YY

tt,

uu, VvV, WW,

S1S1, TrTr, IdId
1;
(* set the y-hat for observed t *)
setYHatObserved|[

‘data,

yhyh,

tt,

S1s1,

Id1d
1;
(* set the y-hat for missing t *)
setYHatMissing[

data,

vhyh,

ss,

S1s1,

TrTr,

Id1d,

1S
1;
Table[vhyh([k], {k,Length[data] }]
]

(* * kk END *kk Kkk CTR * k% * %k EI\]’D *kk khikkx *)
(* * Kk k E:ND *hkk kkk CTR * Kk k * Kk k END *hkk kkk *)
(* * kX% EN’D *hkk kkx CTR * kx x k% mD *hk kkx *)

CHUKYO KEIEIKENKYU

(* Kk KkEkk Kkik BASIC Functions: *kk Kkkk K*k*k *)
(* k% Kkk Kkkhkx BASIC FuIlCtionSZ k% kkk Kk%k *)
(* *hkk Khkhkk KKhk%k BASIC E‘Unctions: **‘* *k*k *k*%k *)
(*

generateNames,

roundReal,

squareDif,

reverseData,

halfString,

setNames,

year,

month,

yData,

vHat,

yvFHat,

yBHat,

yDHat,

mean,

meanYforYear,

groupByMonth,

FullSetQ,

observed,

missing,

FutureQ,

FutureBySameMonthQ,

MissingQ,

nextSmooth,

priorSameMonth,

timeIntervals
*)

(* k% *kk kk*k BASIC F‘-unctions: *kk kkk Khk%k *)

b(* kkk k*kk *k%k SuffixList *khkk kkhkk hhkk *k%k

(* *kk kkk *kk Gome Utilities ,kk kk%k ****)

Clear [generateNames, SuffixList,
Prefixlist,Directionlist, sendMissing]

(* Initialize holder of the suffixes *)

Suffixlist = {}; (* GLOBAL *)

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

(* The following do not change *)
Prefixlist = {“t”,"s”,"y",”S1l”,"Tr","1d”",
g, v, "wWe, "yh y; (* GLOBAL *)
DirectionList = {“F”,"”B”,”D”}; (* GLOBAL *)
(* result is a list of strings: *)
generateNames := Module[{lisl},
lisl=Outer|

StringJoin,

Prefixlist,

DirecList

1//Flatten;
Outer[StringJoin, lisl, SuffixList]//Transpose

(* changes data at ‘places’ to missing *)
sendMissing[data_?MatrixQ, places List] :=
Module[{thedata=data},
((thedatal[#,-1]] = “M")&) /@ places;
thedata

]

appendColumn [data_?MatrixQ, col_?VectorQ] :=
If [Length{col]==Length[data],
(* then append *)
Transpose [Append [data//Transpose,col]],
(* else incompatible lengths ABORT! *)
Return[“*Column wrong length, caannot append!”]

]

(* *kk RFND **k SuffixList *kk kkkx FEND *F* *)
(* *** END *** Some Utilities *** END *** *)

Clear[roundReal,squareDif,reverseData]

(* round reals, leave others as is *)
Attributes[roundReal]= {Listable};
roundReal [x _Real] := Round[x]

roundReal [x_7? (Head[x]=!=Real&)] := x

(* square diff of numbers, return string as is *)

CHUKYO KEIEIKENKYU

squareDif [x ?NumberQ,y_7?NumberQ] := (x-y)"2
squareDif [x_String,y ?NumberQ] := X
squareDif [x_?NumberQ,y_String] := vy
squareDif[{x_,v }] := squareNumDif [x,v]

(* number data by months in reverse direction *)
(* ie, reverse all except months
reverseData[data_?MatrixQ] :=
Transpose [

{Reverse[year/@datal,

month/@data,

Reverse[yData/@datal

}

]
Clear [halfString, setNames]

(* Returns the first half of a string that is:
(* of even length, with both halves the same

halfString(str_String] := (* Returns GLOBAL! *)
Module[{spos, len},
If [MemberQ[Characters(str],”$"],
(* Then we are inside a module *)
(* must strip off S$moduleNbr *)

$pos=StringPosition[str,”s$”11[[1,1]];
StringTake[str, Floor|[($pos-1)/2]1 1],

(* Else halve the string as is *)
len = StringLength[str];
StringTake[str, Floor[len/2]]

(* khkk Khkhkk Kkkhkxk setNames *kkk kkhkk kkhk *)

(* Takes a sequence of symbols, which are *)
(* required to be “doubled”, ie ‘tt’ etc, *)
(* and sets them to be the undoubled symbol *)
(* with suffix appended. ie ‘tt = tf’ *)
(* Notice that ‘symList’ is a sequence of *)
(* symbols. The suffix is a string, and the *)

(* result is that symlist is set to be a *)

*)

*)
*)

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

(* sequence of symbols. *)

setNames|[syms__ Symbol,suffix String:””]:=
Module[{symList={syms}, symHalfStrings},
(* Convert to string, take lst half *)
symHalfStrings =
halfString /@
(ToString /@ symlList);
(* affix suffix, convert from string *)
{syms}//Evaluate =
ToExXpression /@
(StringJoin[#,suffix]& /@ symHalfStrings)
1:

(* end of auxilliary naming functions *)

Clear [year,month, yData,yHat, yFHat,yBHat, yDHat]

vear[record List] := record[[1]1];
month[record List] := record[[2]];
yData[record List] := record[[3]];

(* the following can be used on output of UberCTR: *)
yHat [record List] := record[[4]];
record[[41];
record[[5]];
record[[6]];

yFHat [record_List]

yvBHat [record_List]
yDHat [record List]

year [data_?MatrixQ,mon_Integer,period_Integer:12] :=
Module[{yearl},
yearl = data//First//year;

yvearl+Quotient [mon, period]

Clear [mean, RMSE, meanYforYear, groupByMonth, FullSetQ,
observed, missing, FutureQ, FutureBySameMonthQ,

MissingQ, nextSmooth, priorSameMonth, timeIntervals]
mean[lis List] := (Plus@@lis)/Length[lis]//N;

mean[seq ?NumberQ] := Plus[seq]/Lengthl{seq}l//N;
mean [seq ? (NumberQ[#//N]&)] := Plus[seq]/Length{{seq}]//N;

CHUKYO KEIEIKENKYU

RMSE[lis_?VectorQ] := Sqgrt[Plus@@(lis”2)/Length[lis]]//N;

meanYforYear{data_, k_, period :12] :=

mean [yData/@Select [data, (k-1)period<month[#]<=k*period&]];

groupByMonth[data_, period_:12] :=

Table[

Select[
data,
(Mod[month[#],period] /. 0->period)==k&
1.
{k,period}

1:

FullSetQ[data_, period :12] :=
Union|[
(Mod[month [#],period]& /@ data) /. 0->period
] == Range[period];

observed[data_] := Select[data, #[[3]]=!="M"&];

missing[data_] := Select[data, #{[[3]]=="M"&];

FutureQ[data_?MatrixQ,mon_Integer] :=
(mon > Max[month/@observed[datall);

FutureBySameMonthQ [mon_Integer, per_Integer:12] :=
Module[{sameMonthlList},
sameMonthlList =
month/@
Part |
groupByMonth[data, per],
Mod [mon-1,per]+1
1:
mon > Max[sameMonthList]
1;

MissingQ[data_?MatrixQ,mon_Integer] :=

!FutureQ[mon] && MemberQ[month/@missing[datal];

. An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

(* The smoothing function, our 'workhorse' *)
nextSmooth|[previous_, exponent , constant_] :=

previous /(previous + (l-constant)~exponent);

priorSameMonth [data_?MatrixQ,
mon_Integer,
per_Integer:12] :=
Max@Select [
Join[
{Mod[mon-1,per]+l-per},
month/@
Part [

groupByMonth[data//observed,per],
Mod[mon-1,per]+1

1,
(#<mon&)
1;

(* Time units separating adjacent observations *)
timeIntervals([data_] := (#[[2]]-#[[1]]&) /@
Partition[month/@data,2,1];

(* For future values of y-hat only *)

(* Must supply suffix to variable name *)

(* which is also used to reconstruct *)
(* other needed names eg ‘Id..’ the *)
(* seasonal adjustment index for that *)
(* data set. *)

Clear [YH]

YH[data_?MatrixQ,
mon._TInteger? (#>0&), (*must be future*)
varSuf_String,
period_Integer:lz
1 :=
Module[{dataObs, yhyh,
S1s1, TrTr, Id1d},

CHUKYO KEIEIKENKYU

dataObs = data//observed;
(* Suitability Check: is month ‘mon’ future? *)
If[Not [FutureQ[dataObs,mon]],
(* then ABORT *)
Print[“In ‘YH’, month not a future month!”];
Return[Null] (* ABORT ¥*)

(* else continue *)

1;

(* create the symbols we will use
setNames [vhyvh, S1S81, TrTr, IdId, varSuf] ;
(* DO IT: set yh..[n] to a value

vhyh[mon] =

With[{tn=Max@Select [month/@datalObs, #<mon&] },
(s1sl[tn] + (mon-tn) TrTritn]) *
IdId[priorSameMonth|[dataObs,mon]]

* kkk KKk
(END
(* **% **x END
(* **x %x* END

(* *kkk *khkk *x*k
(* *khkk Kkk Kkkx

(* hkhkk *kkk Kkkhk*k

(* \tl,lsl'lyll

*** BASTIC Functions: *** END
*** BASTC Functions: *** END
*** BASTC Functions: *** END

*** CREATE Globals 1

**%* CREATE Globals

*** CREATE Globals 1

lSll,lTrl,IIdI'lUl

kk*k kk*k
1 *kkk Kdk*k

kk*k k*ik*k

, IVI , IWI

(* Actual Globals names given in args,

* Kk Kk
* k%

* k%
* k%

* * %

* % %

*)

(* e.g. ‘tF’ or ‘tB’ etc *)
(* GLOBALS are all in Arguments to be NAMED
(* by USER *)

(* Functions: *)
(* IndexTimePeriodsAndData,

(* InitializeIndices,

(* InitializeSmoothingCoefficients

(* kkk khkhkk khk kk%k CREATE Globals l *hk*x kk%

Clear|[

IndexTimePeriodsAndData, InitializeIndices,

InitializeSmoothingCoefficients];

.62 —

* k%

* %k

* Kk k

* Kk k

* k*

*k Kk

* k)

* k%

*)

*)
*)
*)

*)
*)
*)

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

(* Creates Globals ‘t’, ‘s’, and ‘v’ *)v
(* no output *)
IndexTimePeriodsAndData[data_?MatrixQ,
tt_Symbol:t,
ss_Symbol:s,
_ Symbol :vy,
period_Integer:12]:=
Module[{p, datalbs, dataMis, numObs, numMis},
p=period;
dataObs=observed[data] ;
dataMis=missing[datal;
numObs=Length[dataCbs] ;
numMis=Length[dataMis] ;
(* Before and up to month 0: *)
Dol[tt[k] = k, {k,1-p,0}];
(* Observed time periods: *)
Do[tt[k] = (month/@dataCbs)[[k]], {k,numObs}];
(* Missing time periods: *)
Do[ss[k]=(month/@dataMis) [[k]], {k,numMis}];
(* Index the data ocbservations: *)
Dolyyltt[k]] = (yData/@dataCbs)[[k]], {k,1,numObs}];
1

(* Creates Globals ‘'Sl1l’, '‘Tr’, and ‘Id’ *)

(* no output *)

TnitializeIndices|[data_?MatrixQ,

yy_Symbol:y,
S1S1_Symbol:S1,
TrTr_Symbol : Tr,
IdId_Symbol:Id,
period_Integer:12]:=
Module[{p,datalbs, k0, k1, dataByMonth,
yMbyMonthGroup, yMMG, yMY},
p = period;
dataObs = observed[data];
dataByMonth=groupByMonth [dataObs] ;
k0 = l1l+Quotient[-1l+month@dataObs[[1]], p]l;
k1 = Modulel[{maxOfMins},
maxOfMins =
Max [month/@

CHUKYO KEIEIKENKYU

(First/@dataByMonth)] ;
Max [
1+Quotient [-1+maxOfMins, pl,
kO+1
1
1;
yMbyMonthGroup=
mean/Q@ (Map [yData, #]1&[#]&/@dataByMonth) ;
vyMMG[k_]:= yMMG[k] = yMbyMonthGroupl[k]];
yMY[k_]1 := yMY[k] =
meaanonear[dataObs,k,p];
TrTr([0] = (yMY[k1l]-yMY[kO]) / ((k1-kO) p);

S181[0] = yMY[k1l] - (kO p - (p-1)/2)TrTr[0];
Do [(* CHANGE FROM ADDITIVE CASE *)
IdTd[k-p] =

mean|[(* DIVISION HERE ¥*)
yy[month[#]] (**) / (**) (
yMY [1+Quotient [month[#]1-1,p]] +
TrTr[0] ((-Mod[p-month[#],p])+(p-1) /2)
)& /@ dataByMonth[[k]]
1,
{k.p}
1;
1;

(* Initialize smoothing coeffs U, V, and W *)
(* creates U[0], VI[0], and W[-p+1] thru W[0] *)

(* no output *)

InitializeSmoothingCoefficients|
dataObs_?MatrixQ,
UU_Symbol:U,
VV_Symbol:V,
WW_Symbol :W,
period_Integer:12,
smoothingExponents_List:{0.4, 0.1, 0.4}

1:=

Module[{alpha, gamma,delta, g, Q,

dataObsObs, dataGroupedByMonth},

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

p = period;

(* make sure this is observed data *)

datalObsObs = observed[datalbs];

(* do not depend on global!! *)

dataGroupedByMonth = groupByMonth[dataObsObs];

{alpha,gamma,delta} = smoothingExponents;

g = mean[#[[2]]-#[[1]1]1& /@
Partition[month/@dataObsObs,2,1]1];

VV[0] = 1 - (l-alpha)”q;

uul0] =1 - (l-gamma)”qg;

Do [

Q[k-p] Module[{mons},

mons month/@ (dataGroupedByMonth[[k]]) ;
(1+Quotient [Last [mons] ,pl) / Length[mons]//N

1

1:
WWik-p]l = 1 - (1-delta)”Qlk-pl,
{k,p}
1
1;

(* *kKk Kk Kk END * kK CREATE Globals 1 * Kk END *kk kk*k *)
(* kkhkk KKhk END * kK CREATE Globals l * Kk *k END *kk*k Kk *)
(* kkx kk¥k END * k * CREATE Globals 1 *) kK END kk*x Kk*k *)

(* kkk khkk hkk kkk EXTEND Globals 1 khkk dkhkk kkk K*kx%k *)
(* hhkk khkk kkk kkk EXTEND Globals 1 kkhkk kkk kkk kxk*k *)

(* kkk kkk kkhkk Kkhkk EXTEND Globals 1 kkk khkk kkk khk%k *)

(* *)
(*“U’,’V',’W’,’Sl’,’Tr’,’Id’,’yh’—obs only ‘ *)
(* GLOBALS are args to be NAMED by USER (e.g. UF) *)

(* Functions: *)

(* SetSmoothingCoefficients, *)

(* SetadjustmentIndices *)

(* *)

(* kkk Khkk Kkkk *khkk EXTEND Globals 1 hhkk dhkk kkk Kkhkk *)

(* extends Globals ‘U’, ‘V’, and ‘W' ¥*)

(* no output *)

SetSmoothingCoefficients]|
data_?MatrixQ,

—_ 65 p—

CHUKYO KEIEIKENKYU

tt_Symbol:t,
UU_Symbol:U,
VV_Symbol:V,
WW_Symbol :W,
period Integer:12,
smoothingExponents_:{.4, .1, .4}
1 :=
Module[{p, alpha, gamma, delta, dataGroupedByMonth,
dataObs, numObs, observationIntervals,
Vlist,Ulist,Wlist},
(* ASSUMES UU,VV,WW ARE INITIALIZED! *)
p = period;
{alpha,gamma,delta} = smoothingExponents;
dataGroupedByMonth = groupByMonthl[data];
dataObs = observed[datal;
numObs = Length[dataObs];
observationIntervals =
timeIntervals[dataObs];
Vlist =
FoldList[
nextSmooth[#1, #2, alphal&,
vwv[0],
observationIntervals
1;
Ulist =
FoldList[
nextSmooth[#1, #2, gammalg,
uulol],
observationIntervals
1:
Wlist=
Tablel
Module [{monthNbr, WSet},
monthNbr = Joinl
{k-p},
month/@
dataGroupedByMonth[[k]]
1;
WSet [k] =
FoldList[

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

nextSmooth[#1, #2/p, deltals,
W k-pl,
(#[[2]11-#[[1]]1&) /@
Partition[monthNbr, 2, 1]
1;
(*index by monthNbr for sort at end:*)
Transpose [{monthNbr, WSet [k] }]
1.
{k, p}
1//(Sort[Flatten[#,1], (#1[[1]]1<#2[[1]1]1&)]&);

Do[
vitt[k]] = Vlist[[k]];
uultt[k]] = Ulist[[k]],
{k, numObs }

1;

(* Wlist is indexed by month, so just map: *)
(WWI#[[1]11]1=#[[2]])& /@ Wlist;
1;

(* extends globals ‘Sl’, ‘Tr’, ‘Id’ ¥*)
SetAdjustmentIndices|
data_?MatrixQ,
period _Integer:12,
yy_Symbol:y,
tt_Symbol:t,
UU_Symbol : U,
VV_Symbol :V,
WW_Symbol :W,
S1S1_Symbol:S1,
TrTr_Symbol:Tr,
IdId_Symbol:Id
] := ,
Module[{numObs=Length[data//observed] ,priorMonth},
Dol (
priorMonth =
priorSameMonth[data//observed, tt [n],period] ;
S1S1l[ttn]] =

CHUKYO KEIEIKENKYU

(wWitt[n]] yylttn]] / IdId[priorMonth]) +
(1-vw(tt[n]]) *
(81s81[tt[n-1]1] +(tt[n]l-tt[n-1])TrTritt(n-11]1);
TrTr{tt[n]] = UU[tt[n]] *
(S1s1litt[n]l]l-s1s1litt[n-1]11)/(tt[n]l-tt[n-11) +
(1-UU[tt(n]l]) TrTritt[n-111;
Idrdltt[n]] = Ww[tt[n]] *
yylttinl] / s1slittin]] +
(1-Wwwitt[n]])IdId[priorMonth]
)

{n, numObs}

setYHatObserved[
data_?MatrixQ,
yhyh Symbol:yh,
tt_Symbol:t,
S1S1_Symbol:S1,
1dId_Symbol : Id
1 :=
Module [{numObs=data//observed//Length},
Dol
vhyh[tt[n]] = S1Slitt[n]] IdId[tt[n]],
{n, numObs}

setYHatMissing{
data__?MatrixQ,
vhyh_Symbol :yh,
ss_Symbol:s,
S1S1_Symbol:S1,
TrTr_Symbol :Tr,
Id1d_Symbol :Id,
period_Integer:12
IS
Module[{dataObs, numMis, tn,p},
p=period;
dataObs=data//observed;

(*
(*
(*

(*

(*
(*

An Extension of the CTR Extension of Holt-Winters Exponential Smoothing

nunMis=data//missing//Length;

Dol

yvhyh[ss[n]] =

With[

{tn=Max@Select [month/@datalbs, #<ss[nl&]},
(81Sl[tn] + (n-tn) TrTritn]) *
IdId[priorSameMonth[data,ss[n],pl]

I,

{n, nunMis} -

* %k END * Kk *k
* k% END * kK
* %k END * k*

* k% END * k%
* k% END * Kk k
* k% END * %k

* k%

* kK

* k%

* k&

* k%

EXTEND Globals 1 *** ***x FEND ***
EXTEND Globals 1 *** *** END ***
EXTEND Globals 1 *** **x END ***

CTR PACKAGE CTR *** *** END ***
CTR PACKAGE CTR *** #**x END **%*
CTR PACKAGE CTR *** *** END ***

.69 —

*)
*)

*)

*)

*)

*)

CHUKYO KEIEIKENKYU

References

Aldrin, M. and Damsleth, E. “Forecasting Non-seasonal Time Series with Missing Observatons” in The
Journal of Forecasting, Vol 8, 97-116 (1989)

Box, E. P. B,, et. al. Time Series Analysis: forecasting and control, 3rd ed., Prentice Hall, Englewood
Clift’s, NJ, 1994

Cipra, T. et al, Holt-Winters Method with Missing Observations, in Management Science, INFORMS, vol
41, No.1, January 1995.

i
Gardner, E. S., Exponential Smoothing : The State of the Art in Journal of Forecasting, vol 4, 1-28
(1985)

Hamilton, James D., Time Series Analysis, Princeton University Press, Princeton, NJ, 1994

Notestine, Ronald D., “On Implementing CTR's Extension to Holt-Winters Exponential Smoothing” in
Chukyo Deiei Kenkyu (in English in : 3R E#%E), Vol 5., No.2 February 1996.

Wilson, J H. and Barry Keating, Business Forecasting, 2nd ed. Irwin Publishers, Burr Ridge, Illinois,
1994,

Wright, D. J., Forecasting Data Published at Irregular Intervals Using an Extension of Holt's Method in
Management Science, INFORMS, vol 32, No.4, April 1986.

