On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

On Implementing CTR’s Extension to

Holt-Winters Exponential Smoothing

Ronald D. Notestine
Faculty of Management
Chukyo University

Introduction

Exponential Smoothing

Smoothing techniques are commonly used in business and industry both for forecasting,
as well as for attempting to discern the “true” path of some variable amidst the noise of a
somewhat random world. Among the various smoothing methods, exponential smoothing is
among the most popular [Gardner 1985]. Exponential models are relatively simple to set up,
and readily amenable to computerization. According to Gardner, the “surprising accuracy”
of exponential smoothing models may be the primary reason for their great popularity.
In exponential smoothing, the forecast for any particular time is a weighted average of all
of the past values. Thus, exponential smoothing is a variety of moving average. It is called
exponential smoothing, because the weights assigned to each of the past values declines
geometrically. (That is, according to an exponent given by the number of periods separat-
ing the forecast time and the past value in question.)
Using “Y” for the known data, and “Y” (“y-hat”) for the forecast value, we can write

exponential smoothing as, shown in Figure

3, at right. -~ - v
Yeyp = QY¢ + (1-0)Y
The form at right is commonly expressed Y‘t+1 = Yt + (X'(Yt B Yt)
in the following manner : The Forecast for Figure 1

the next period can be expressed as the sum of the forecast for the last period, and a fraction
of the error in that forecast. The fraction taken is given by the smoothing constant,
commonly expressed as alpha.

Incidentally, the former expression clearly gives the forecast as a weighted average of the
observed present value and the forecast value. The weighting factor is again alpha. A

philosophical point is° whether one should use the word “actual” when referring to the

— 19 —

CHUKYO KEIEIKENKYU

observed value “Y”. It is certainly what one has actually observed as the value of y for that
time. It is the realization of y that occurred this time. But, there may be a great deal of
randomness superimposed upon a “true” value of y. In which case it is perfectly possible
that the forecast value might tell us more about the underlying process than the value we
actually observe. This is a major reason why smoothing techniques are used, even when no
“future forecasting” is needed.

Holt’s technique of exponential smoothing is an extension to simple exponential smooth-
ing in which a trend is taken into account. The trend is forecast according to the same idea
as above, and then superimposed upon the forecast for the level.

Winter’s extension to Holt’s technique attempts to account for seasonal variation. It again
follows the same idea as for simple exponential smoothing. The seasonal variation is
estimated by considering the series of past observations falling in the same period of the

S€ason.

Cipra-Trujillo-Rubio (CTR)

Introduction

Cipra, Trujillo, and Rubio (hereafter referred to as CTR) present what they describe as
a simple procedure for interpolating, smoothing and predicting the values of a seasonal time
series with missing observations. This case is particularly important, as the data one
encounters in practice often has some data points missing, was taken at irregular intervals,
the interval of data collection changed at some time, or some combination of these problems.
The standard methods, mentioned above, assume that all data occurs at regular interval,
with none missing, so some way to modify the method to account for irregularly spaced data
is quite important.
The Basic Model

As with all exponential smoothing models, the basic philosophy is given by CTR in their
first equation (See Figure 2) : That is, the new estimate is a weighted average of the obser-
ved value, and the old estimate. But, now
1) the weighting factor changes, and
2) the time is indexed : some times are missing, so there may be a gap
between time t-sub-n and time t-sub-(n-1). That is, between two successive observed
times, there may be a missing observation.

The Estimates of the level (S), the trend (T), and the seasonal index (I) are given by CTR’s

— 20 —

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

equations (21), (6), and (22) (See
Figure 3) :
The recursive forms of the

smoothing coefficients are given by
equations (8), (9), and (10) (See
Figure 4) : In the equations at right,
the asterisk refers to the most recent
non-missing data for a period corre-
sponding to the same time of the sea-
son. (E.g. the most recent non-miss-
ing December observation.) While this
may be inconvenient in most program-
ming languages (the author is not a
professional programmer, and so
makes no claims regarding this), it
can be done quite nicely using features
of the mathematica language. As an
example of the non recursive form, we
give that for the smoothing coefficient
for the level (See Figure5). Math-
ematica is well adapted to the use of
recursive formulations, so we shall not
use the form at right

Forecasts and interpolations are
calculated from the same formula.
Thus, interpolations under this scheme
are actually just forecasts using only
the data prior to the period of the
“interpolation” (See Figure 6).

Smoothed values for non-missing

observations are calculated according

to (See Figure 7) :

Ytn thYtn + (1"th)Ytn_l
Figure 2
Sty =Ve, 2%+ (1-Vi)[St,. + (ot T,]
tn-1
T, =Utn Sty Sty (1-U)T,
“n-1
_ Yt
I, =W 2+ (1-Weplg
St.,
Figure 3
Vi B}
V —Dl__ =(1_cy)tn -1
[btn+Vt 1 btn (1 G,) ‘
Uy
U; = n-1 , di =(1-y)in-ta-1
t, d_ + U, ¢,=(1-y)
Wi, (ta-tn-1)/p
=l f =(1-8
= u fum(1-9)
Figure 4
_ 1
th - n
Z (1 _ a) Ch = Tty
i=1

Figure 5

Ym+tn(tn) =(Stn + mTtn)ImHn*

Figure 6
P
Y, (t,) =S¢, L,
Figure 7

— 921 —

CHUKYO KEIEIKENKYU

Initial trend and initial level of the series are calculated according to (See Figure 8) :

_ Yx, Yk _ -1
Lo = O So = Yk~ Pko"pT

T
(ki-ko)p °

Figure 8
The initial seasonal adjustment indices need a tad more calculation. It is necessary to set
initial values of the smoothing coefficients for a full period prior to the beginning of the data.
(E.g. a full year, in the most common case.) Then, it is necessary to find the first season
with any data at all (not hard) and the first season by which at least one observation is
present for all periods. (E.g. the year by which there is at least one observation for every

month.) (See Figure9).

same position within the seasonal period. k (i)
For example, all January's, or all Junes.
k(i) is the number of terms in the sum for Vi+x
time period i. I itkp —)
y-bar is the mean of data observations — P- 1

for seasonal period k (ie year k). Yk+ 1+ P T 0

The sum is over all periods of the I, = 1 z I; +kp
k

Figure 9
About the Implementation

data is read in from an external data file. The external file is presumed to be a text
file, such as might be written to disk by any data base, statistics, or spread sheet program.
The structure of the file is assumed to be a repetition of (year, month, date), although other
structures can be easily accommodated. Missing data points are assumed to marked by an
ascii text upper case “M”. Again, any other marker is easily accommodated.
(It is important to note that the 'month’ numbers in the data set do NOT repeat. The
months for the second year will begin with 13 for January, or some later month.)

Named functions are defined for extracting year, month, or date from an element of the
data set. The form of the mathematica programming language make these especially handy
in the sequel. Initializing the trend coefficient requires that the average of the y data be

found for a seasonal period (year). It is exceptionally easy to construct such a function in

— 929

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

mathematica. A major point being that it is of no concern whether any data are missing for
the year, the average automatically accounts for missing data.

By using the Apply ('@ @’ below) and ’Length’, The average for a list easily results
regardless of the number of elements. (The result is converted to decimal to avoid the

possibility of fractions being displayed.)
In[1]:=mean [is List] : = (Plus@ @lis)/Length [lis] //N

By using an anonymous function, the relevant data is selected. By using the 'Map’
capability ('/ @’ below), only the y-data are extracted before being fed into the averaging

function.

In [1] :=meanYforSeasonalPeriod [data_, k_, per_ : 12] :=
mean [
yData/ @
Select [
data,
(k=1) per <month [#] <=k*per&

]

It is also quité easy to write a function that will gather all of the data belonging to the
same month. The following function takes all of the data, which is in ascending order, and
gathers together all of the records for January, all of the records for February, etc. Or, if
the period is different from 12, another period can be given as a second argument. Note that
the anonymous function for selecting data changes all zeroe’s to 12 (or whatever the period
is). This is because Mod [12, 12] is 0, but we want this to be 12 for the 12th month, of
course. The grouping is done for every month 'k’ from 1 to the number of periods in one

season, usually 12.

In[2]:=groupByMonth [data , per :12] :=
Table [
Select [
data,
(Mod [month [#] , per]/.0-> per) ==k&] ,

— 923 —

CHUKYO KEIEIKENKYU

{k, per}

We also need to test a list of records to see if we have included at least one for each
month. This is easily done by extracting the months from the records, applying the 'Union’
function, which essentially converts the list to a set by eliminating duplicates, and then
asking if the result is the same as the set of all integers from 1 to the number of periods in

one season. This is more easily coded than explained.

In[3]:=FullSetQ [data , per :12] :=
Union [
Mod [month [#] , per] &/@
data/. 0 -> per
] ==Range [per]

Normally, the non recursive form for the smoothing coefficients is used. However,
when data are missing, one must be very careful about the exponents, as they no longer
increase by one, but rather by the amount of gap in between non-missing observations. By
using mathematica’s 'FoldList’ function, this is automatically done. First, we generate a
list of the time differences between successive observations. Then, we define a general
function for the relation between successive values of any of the smoothing coefficients.

It might be worth looking at this in more detail. ’dataObs’ is the list of all non-missing

records. It is of the form {year, time (month), y-data}

In[4]:=dataObs//Short

Out [4]={{1991, 1, 491}, {1991, 2, 475}, <<36>>, {1994, 48, 832}}

We extract the times (months).

In [5] : =month/ @dataObs//Short

Out [5]={1, 2, 4, 5, 6, 8, 9, 10, 11, <<25>>, 44, 45, 46, 47, 48}
Next, we partition this list into pairs of successive times (months)

In [6]:= Partition [month/ @dataObs, 2, 1]//Short

On Implementing CTR's Extension to Holt-Winters Exponential Smoothing

Out [6]={{1, 2}, {2, 4}, {4, 5}, <<33>>, {46, 47}, {47, 48}}
Finally, we map an anonymous function to take the differences

In[7]:=tTimeDiffList=(# [[2]1] -# [[1]] &)/e@
Partition [month/@dataObs, 2, 1] ;
tTimeDiffList//Short

OUtl:7]={1y Zy 1) 17 27 17 1; 1y 1; 19 1’ <<21>>7 1; 1’ 17 1y]~y 1}
Here is our general function for smoothing coefficients.

In [8] . =next [previous_, exponent constant_] =

previous/ (previous+ (1 —constant)exponent)

To get the list of smoothing coefficients 'V [t [n]]’, we need only fold this into the list
of time differences, using V [0], and the factor ’a’ (alpha). The function 'FoldList’ acts in

the following way :
In[9]:=FoldList [f, x0, {x1, x2}]
Out [9]={x0, f[x0,x1], f[f[x0,x1], x2]}

So, starting with’V [0]’, the following expression “folds together” the entire list of "V’

values.
In [10] : =Vlist=
FoldList [
next [#1, #2, a] &,
v[o],
tTimeDiffList
1;

Vlist//Short
Out [10]={0.468372, 0.438398, 0.549097, <<35>>, 0.403139}

The smoothing coefficients for the seasonal index, must be “folded” separately for each
month of the year, and scaled by a factor of 12, or whatever the number of time periods per

seasonal period is. Again this can be done neatly. First, for each month, the initial month

— 925 —

CHUKYO KEIEIKENKYU

for year 0 (one of months minusll through 0) is added to the list.

For example, for month 3 (March), the augmented list of non-missing months is :

In [11] : =k=3 ;p=12;
mons=Join [{k-p}, month/@dataGroupedByMonth [[k]]]

Out [11]={-9, 15, 27, 39}

Partitioning, and taking differences
In[12]:=(# [[2]] -# [[1]] &) /@Partition [mons, 2, 1]
Out [12]={24, 12, 12}

Then, folding the 'next’ function, starting with W [3-12], we get the list of the rest of the W

[n] for n corresponding to a non-missing march :
In [14] : =FoldList [next [#1, #2 /p, d] & W [k-pl , %]
{0.49394, 0.578425, 0.490846, 0.449968}

Putting this all into one expression, and using module to provide for local variables, We get
the complete list of seasonal smoothing factors. However, there is one remaining wrinkle :
they are still grouped by month name. So, at the end, we sort by time period, so that

January of the second year will come immediately after December of the first year, etc.

In [15] : =Wlist=
Table [
Module [{mons, WSet},
mons=Join [
{k-p},
month/ @
dataGroupedByMonth [[k]]
1;
wset [k] =
FoldList [
next [#1, #2/p, d] &,
W [k-p],

26 —

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

(# [[21]1-#[[1]1] &)/e

Partition [mons, 2, 1]

1;
Transpose [{mons, WSet [k]}]
1,
{k, p}

1//(Sort [Flatten [#, 11, (#1 [[111 <#2 [[1]] &)1 &);
Wlist//Short

Out [15]={{-11, 0.49394}, <<49>>, {48, 0.554905}}

However, while we have calculated the values for the seasonal smoothing constant, W,
we have not actually yet set the W to the values we found. Ordinarily, a Do loop might be
used. However, since each recvord includes not just the value, but the time period, there is
a very compact option available. It is based on the fact that we are setting W only for
observed times, and the observed times are the first eléments of the elements of the list ’
Wilist’. We wish to set W [t [n]], where the nth element of "Wlist’ is the pair {t [n], W
[t[n]]}. That, for each element, the first sub-element is the index, and the second is the

corresponding value. So we map the following function onto the list :
In [16] : =(w [# [[1111 =# [[2 1]) &/ @Wiist;

In [17] : =Table [{t [k] , W [t [k]1}, {k, numObs}1//Take [#, 4] &
Out [17]={{ 1, 0.451524}, {2, 0.451524}, {4, 0.4}, {5, 0.4}}

The formulae for the level, trend, and seasonal index are connected, and thus cannot be
calculated separately. While it would be possible to construct a folding operation, it seems
easiest to use a Do loop. Because the time has been indexed for all non-missing data, it is

particularly straightforward.

In [18] : =
Do [
si [t [n]] =
(v [t [n]] y [t [n]]/i1d [prevSameMonth [t [n1]])+
(1-v [t [nID(sI [t [n-11]+(t [n] =t [n-1 D Tr [t [n-11]11);

— 927 —

CHUKYO KEIEIKENKYU

Tr [t [n]1] =U [t [n]] *
(st [t [n]] -si [t [n-11D/(t [n] -t [n-1 D+
(1-u [t [n1DTr [t [n-111;

Id [t [n]] =w [t [n]] *

y [t [n11/si [+ [n11+

(1-w [t [n]]Did [prevSameMonth [t [n11] ;

yh [t [n]] =sI [t [n]1] 1d [t [n]]
),
{n, numObs}

The data used

The data used is hypothetical data based on a set used by CTR in their paper (prices of
pigs at the market).

In [19] : =yHats=Table [yh [k] , {k, numMis+numObs}] ;

In [20] : =finalTableau=
Append [dataAll//Transpose, yHats]//Transpose;

Showing this is table form, with the markers “M” eliminated :

In [21] : =TableForm [finalTableau,
TableHeadings—>{None, {“year”, “time”, “Y”, *Y-hat”}},
TableSpacing—>{0, 3}

1M

year time Y Y -hat
1991 1 491 476.75

1991 2 475 462.497
1991 3 422.047
1991 4 441 444.223
1991 5 439 440.592
1991 6 425 428.213
1991 7 444 .36

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

1991 8 434 441.08

1991 9 450 453.831
1991 10 466 488.937
1991 11 523 522.153
1991 12 483 482.987
1992 13 494 470.158
1992 14 437 431.365
1992 15 412 405.884
1992 16 403 410.336
1992 17 394 400.659
1992 18 384 388.164
1992 19 389 392.676
1992 20 402 403.019
1992 21 419.781
1992 22 480.448
1992 23 487 492.824
1992 24 461 460.971
1993 25 421.407
1993 26 378.693
1993 27 404 395.21

1993 28 433 423.164
1993 29 446 436.656
1993 30 441 436.233
1993 31 435 439.675
1993 32 451 455.461
1993 33 483.825
1993 34 539 543.554
1993 35 585 586.835
1993 36 557.223
1994 37 595 579.42

1994 38 560 549.025
1994 39 560 545.078
1994 40 5565.899

— 929 —

CHUKYO KEIEIKENKYU

1994 41 598 588.642
1994 42 580 580.021
1994 43 636 624.741
1994 44 655 654.606
1994 45 685 688.518
1994 46 908 878.04
1994 47 864 890.921
1994 48 832 843.816

Plots

We generate the plots of the smoothed and of the actual data, but do not show them.

We join the points of the smoothed plot, but not the actual data.

ahead is shown in red (gray) dots.

In [22] : =rawDataPlot=
ListPlot [Rest/ @dataObs,
PlotStyle—>{PointSize [.015]},

DisplayFunction—>Ildentity

1;
In [23] : =numTot=numObs+ numMis;

In [24] : =smoothedPlot=
ListPlot [Table [{n, yh [nl}, {n, numTot}] ,

The forecast for one year

PlotStyle—>{PointSize [.015] , RGBColor [0, 0, 11},

PlotJoined—>True,
DisplayFunction—>identity

1;

In [25] : =forecastPlot=

ListPlot [Table [{n, yh [n]}, {n, numTot+1, numTot+p}] ,
PlotStyle—>{PointSize [.015] , RGBColor [1, 0, 01},

DisplayFunction—>Ildentity

1;

In [26] : =Show [rawDataPlot, smoothedPlot, forecastPlot,

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

DisplayFunction—>$DisplayFunction] ;

1000 ¢t
900 [°
800 8
700 F
600 [°
500 e {Eo o

N \4

10 20 30 40 50 60

The Mathematica Implementation

All Calculations

in[1] :=
Clear [year, month, yData,
mean, meanYforSeasonalPeriod, groupByMonth,

FullSetQ, next, prevSameMonth] :

year [record 1 :=record [[11]];
month [record] :=record [[2]] ;
yData [record] :=record [[31]1] ;

mean [lis_List] :=(Plus@ @lis)/Length [lis]//N

mean [seq ?NumberQ] :=Plus [seql/Length [{seq}]//N

mean [seq_ ?(NumberQ [#//N] &)] :=Plus [seql/Length [{seq}]//N
meaanorSeésonalPeriod [data_, k_, per_ :12] :=

mean [yData/@Select [data, (k-1)per<month [#] <=k * per&]]

groupByMonth [data , per :12] :=
Table [
Select [

— 31 —

CHUKYO KEIEIKENKYU

data,
(Mod [month [#] , perl/. 0 —>per)==k&] ,
{k, per}
]

FuliSetQ [data , per :12] :=
Union -[
Mod [month [#] , per] &/@
data/. 0 ->per
] ==Range [per]

next [previous_, exponent__, constantﬁ] 1=

previous/ (previous+ (1 —constant)exponent)

prevSameMonth [k] :=
Max @
Select [
Join [
{Mod [k-1, 12]+ 1 —p},
month/ @
dataGroupedByMonth [[
Mod [k-1, 12]+1
1]
1,
(#<k&)
]

(* data normally read from from a disk file: %)

In [16] : =dataAll=

{{1991, 1, 491}, {1991, 2, 475}, {1991, 3 *m”}, {1991, 4 441},
{1991, 5, 439}, {1991, 6, 425}, {1991, 7 *M"}, {1991, 8, 434}
{1991, 9, 450}, {1991, 10, 466}, {1991, 11, 523},
{1991, 12, 483}, {1992, 13, 494}, {1992 14, 437}
{1992, 15, 412}, {1992, 16, 403}, {1992, 17, 394},
{1992, 18, 384}, {1992, 19, 389}, {1992, 20, 402},

— 32 —

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

{1992, 21,*M~}, {1992, 22,*M”}, {1992, 23, 487},
{1992, 24, 481}, {1993, 25 M”}, {1993, 26,“M"},
{1993, 27, 404}, {1993, 28, 433}, {1993, 29, 446},
{1993, 30, 441}, {1993, 31, 435}, {1993, 32, 451},
{1993, 33,*m~}, {1993, 34, 539}, {1993, 35, 585},
{1993, 36,*M~}, {1994, 37, 595}, {1994, 38, 560},
{1994, 39, 560}, {1994, 40,*M”}, {1994, 41, 598},
{1994, 42, 580}, {1994, 43, 636}, {1994, 44, 655},
{1994, 45, 685}, {1994, 46, 908}, {1994, 47, 864},
{1994, 48, 832}}:

In[17]:=
dataObs=Select [dataAll, # [[-11]1] =="M"&] ;
(*form: {{year, tp, v}, {year, tp, y}..} *)

dataMis=Select [dataAll, # [[-1]] =="M"&] ;
(% form: {{year, tp, *M”}, {year, tp, “M”}...} *)

tTimeDiffList=(# [[2]] -# [[1]] &)/e
Partition [month/@dataObs, 2, 1] ;

In[22]:=
Clear [InitializeCTR]

InitializeCTR [data ?MatrixQ] :=
InitializeCTR [data, {0.4, 0.1, 0.4}]

InitializeCTR [data__?MatrixQ, per_lnteger] 1=
InitializeCTR [data, {0.4, 0.1, 0.4}, per]

InitializeCTR [dataObs__ ?MatrixQ,
7 {alphaC__ :0.4, gamma_ :0.1, delta :0.4},
per Integer: 12
1 :=Module [{},
p=per;
numObs=Length [dataObs] ;

— 33 —

CHUKYO KEIEIKENKYU

numMis=Length [dataMis] ;
a~alpha;
g=gamma;
d=delta;
Do [t [k] =(month/@dataObs) [[k1] , {k, numObs}] ;
Do [t [k] =k, {k, 1-p, 01}];
Do [y [t [k]] =(yData/@dataObs) [[k]] , {k, 1, numObs}] ;
Do [s [k] =(month/@dataMis) [[k1] , {k, numMis}] ;
dataGroupedByMonth=groupByMonth [dataObs] ;
k 0 =1 +Quotient [-1 +month@dataObs [[1]1], p] ;
k 1 =Module [{maxOfMins},
maxOfMins=
Max [month/ @ (First/ @dataGroupedByMonth)] ;
1 +Quotient [-1 +max0OfMins, p]
1;
yMbyMonthGroup=
mean/ @ (Map [yData, #] & [#] &/@dataGroupedByMonth);
yMMG [k_1 :=yMMG [k] =yMbyMonthGroup [[k1] ;
yMSP [k 1 :=ymsP [k] =
meanYforSeasonalPeriod [dataObs, k, p] ;
Tr [0] =(yMSP [k1] -ymsP [k01)/((k1-k0)p);
SsI[0]=yMsSP [k1] ~(k0p-(p-1)/2)Tr [0];
Do [(* CHANGE FROM ADDITIVE CASE *)
Id [k-p] =
mean [(* DIVISION HERE *)
y [month [#1] (s %)/ (= %)(
yMSP [1 +Quotient [month [#] -1, p]1+
Tr [0] ((-Mod [p-month [#] , p])+(p-1)/2)
)&/ @dataGroupedByMonth [[k1]
1,
{k, p}
1

(* Initialize q and Qi *)

— 34 —

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

g=mean [# [[2]] -# [[1]] &/ @
Partition [month/ @dataObs, 2, 11] ;
v [0] =1-(1-alpha)g;
Uulo]=1-(1-gamma)q;
Do [
Q [k-p] =Module [{mons},
mons=month/ @ (dataGroupedByMonth [[k]]);
(1 +Quotient [Last [mons] , pJ)/Length [mons]//N
1;
W [k-p] =1-(1-delta)Q [k-p],
{k, p}
1;
]

In [27] : =
InitializeCTR [dataObs]

In [28] :=
Viist=
FoldList [
next [#1, #2, a] &,
vio],
tTimeDiffList
1
Ulist=
FoldList [
next [#1, #2, g] &,
ulo],
tTimeDiffList
1;
Wilist=
Table [
Module [{mons, WSet},

mons=Join [

CHUKYO KEIEIKENKYU

{k-p},
month/ @
dataGroupedByMonth [[k]]
1;
Wset [k] =
FoldList [
next [#1, #2 /p, d] &,
W [k-pl ,
#L211-+#11] &/e
Partition [mons, 2, 1]
1;
Transpose [{mons, WSet [k]1}]
1,
{k, p}

1//(sort [Flatten [#, 11, (#1 [[11]1 <#2 [[1]] &)] &);

Do [
v [t [k1] =viist [[k]1] ;
U [t [k1] =uiist [[k1],
{k, numObs}

1;

(* We can be slicker with the W’s, since they are indexed %)

(w [# [[111] =¢ [[2]1D) &/ @wiist;

Do [(
sI [t [n]] =
(v [t [n1]1 v [t [n]]/1d [prevSameMonth [t [n]]]1) +
(1-v [t [nID(sI [t [n-1]J1+ (¢t [n] -t [n-1 D Tr [t [n-11D);
Tr [t [n]J] =u [t [n]] =*
(st [t [n1] -sI [t [n-11D/(t [n] -t [n-1 D+
(1-u [t [nIDTr [t [n-11];
Id [t [n]] =w [t [n]] *
y [t [n]11/s1 [t [n]1+

— 36 —

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

(1-w [t [nIDId [prevSameMonth [t [n]]1] ;
yh [t [n]] =si [t [n]] id [t [n]]
),
{n, numObs}

Finally Extrapolations

In [36] :=
yh [n_/;((IMemberQ [month/@dataObs, n])&&n>0)] :=
yh [n] =
With [{tn=Max@Select [month/@dataObs, #<n&l},
(sl [tn]+ (n—tn)Tr [tn]) *
Id [prevSameMonth [nl]

Result
yHats=Table [yh [k] , {k, numMis+numObs}] ;

dataSmoothedTableau=

Append [dataAll//Transpose, yHats]//Transpose:;

forecastTableau=

Table [
{1 +dataanl [[-1, 111,
k,
“ForeCast”,
yh [k]
%,
{k, numMis+numObs+ 1, numMis+numObs+13}
1;
TableForm [

Join [dataSmoothedTableau, forecastTableau] ,

TableHeadings—>{None, {"Year”, “t”, “y”, “y~hat”}},

CHUKYO KEIEIKENKYU

TableSpacing->{0, 3}
]/.“M"—> ""/."For‘eCaSt”‘>"FC”

Year t y y-hat
1991 1 491 476.75
1991 2 475 462.497
1991 3 422.047
1991 4 441 444.223
1991 5 439 440.592
1991 6 425 428.213
1991 7 444 .36
1991 8 434 441.08
1991 9 450 453.831

1991 10 466 488.937
1991 11 523 522.153
1991 12 483 482.987
1992 13 494 470.158
1992 14 437 431.365
1992 15 412 405.884
1992 16 403 410.336
1992 17 394 400.659
1992 18 384 388.164
1992 19 389 392.676
1992 20 402 403.019
1992 21 419.781
1992 22 480.448
1992 23 487 492.824
1992 24 461 460.971
1993 25 421.407
1993 26 378.693
1993 27 404 395.21

1993 28 433 423.164
1993 29 446 436.656

On Implementing CTR’s Extension to Holt-Winters Exponential Smoothing

1993 30 441 436.233
1993 31 435 439.675
1993 32 451 455.461
1993 33 483.825
1993 34 539 543.554
1993 35 585 586.835
1993 36 957.223
1994 37 595 579.42

1994 38 560 549.025
1994 39 560 545.078
1994 40 555.899
1994 41 598 588.642
1994 42 580 580.021
1994 43 636 624.741
1994 44 655 654.606
1994 45 685 688.518
1994 46 908 878.04

1994 47 864 890.921
1994 48 832 843.816
1995 49 FC 832.445
1995 50 FC 761.294
1995 51 FC 726.55

1995 52 FC 739.467
1995 53 FC 755.476
1995 54 FC 741.86

1995 55 FC 775.188
1995 56 FC 806.755
1995 57 FC 853.808
1995 58 FC 1033.04
1995 59 FC 1073.92
1995 60 FC 1032.71
1995 61 FC 1015.39

— 39 —

CHUKYO KEIEIKENKYU

References

Box, E.P.B,, et. al. Time Series Analysis : forecasting and control, 3 rd ed., Prentice Hall,

Englewood Cliffs, NJ, 1994

Cipra, T. et al, Holt-Winters Method with Missing Observations, in Management Science,

INFORMS, vol 41, No. 1, January 1995.

Gardner, E.S., Exponential Smoothing : The State of the Art, in Journal of Forecasting, vol
4, 1-28(1985)

Hamilton, James D., Time Series Analysis, Princeton University Press, Princeton, NJ,

1994

Wilson,] H. and Barry Keating, Business Forecasting, 2nd ed. Irwin Publishers, Burr

Ridge, Illinois, 1994.

Wright, D.J., Forecasting Data Published at Irregular Intervals Using an Extension of Holt’s
Method in Management Science, INFORMS, vol 32, No. 4, April 1986.

— 40 —

