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Introduction

The importance of so-called "Computer Algebra Systems" for the visualization of mathematical
concepts has been much discussed in recent years. An important aspect of the software package
Mathematica is that it is also a complete programming environment, as well as a system for doing
mathematics. In a class in which both mathematical and computer programming skills are of
concern, this is an important issue.

In fact, the reason for its great growth in popularity among research institutions, engineers,
architectual designers, financial analysts, and others is that the system for doing mathematics is
itself the programming environment. Further with its extensive pattern matching capability,
powerful techniques are immediately available which would require painstaking programming to
duplicate in a traditional procedural language.

GraphLP2D is a package written in the Mathematica programming language. It can be used to
make graphs for 2 dimensional linear programming problems, and was made for instructional
purposes. The package is used with a dual purpose in class. One purpose is mathematical: to help
users to visualize simple Linear Programming problems, and the relation of the feasible region to
optimal solutions. The second purpose is in programming: The users write Mathematica functions

that utilize the existing package. Then, they rewrite the package to give it more functionality.

As the user receives the package, knowledge of Mathematica programming is needed to make
use of it. For exafnple, there is no function to draw a graph showing the constraint lines, or their
intersections. But, there is a function that finds the coordinates of all intersections of constraint
lines. There are then other functions that construct Mathematica Graphics Objects for the points

and lines.
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A Simple Maximum Problem

Here is a standard, 2-variable LP problem:

Maximize: z = 4x + 3y
Subject to: X + 2y <=

2% Yy <=

x > 0, y >= 0

To use the package, we must define vectors for the objective function, 'c', the rhs of the
constraints, 'b', and the coefficient matrix, 'mm’, of the lhs of the constraints. Further, we need a
vector of the operations relating the rows of mm with the elements of b. Both vectors and

matrices are represented in Mathematica as lists.

So, we enter the following:

c = {4,3};

mn = {{1,2},{2,1},{1,0},{0,1}};
b = {8,7,0,0};

ops = {LessEqual, LessEqual,

GreaterEqual, GreaterEqual};

Notice that the user is required to explictly enter all constraints, including the non-negativity of
xandy.

A Rudimentary Data Structure

To find the set of intersections of the four constraints (two normal, plus the two non-negativity

constraints), the user uses the package function 'IntersectionsIL'
intsIL = IntersectionsIL[mm,b]
{{{1, 23}, {2, 33}, {{1, 3}, {0, 4}}, {{1, 4}, {8, 0}},

7
({2, 33}, {0, 73}, {{2, 4}, {-, 0}}, {{3, 4}, {0, 0}}}
2

Here, the user encounters a rudimentary data structure. The output is what is called an
"Indexed List" in the parlance of the package. In this case, it is a list of intersections of constraint
equations, indexed by the numbers of the two equations intersecting at that point.

The 'ColumnForm' function strips off the outermost parentheses and displays the elements of

the list one per row, making it easier to read.
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intsIL//ColumnForm
{1, 23}, {2, 3}}
{{1, 3}, {0, 41}
{{1, 43}, {8, 0}}
{{2, 3}, {0, 7}}

7
{{2, 4}, {-, 0}}

2
{{3, 4}, {0, 0}}

Graphics Primitives

In order to make graphs, we must have several quantities available. One basic item is the
indexed list of all constraint intersections, shown above. But there are others.

In order to show the points of intersection, we must put the x-y coordinates (numbers) inside
the head 'Point'. For example, the coordinateé of the origin are {0,0}, but if we want to show that

point in a Mathematica graphic, we must use:

Point[{0,0}]

The head 'Point’ is sometimes called an "inert" head. It takes no action on its argument. Its only
purpose is to label the list arguments as the coordinates of a point. (We will see later that we will
need another layer of an inert head, "Show", before we can actually display the point on screen.)

To make a list of the '"Point' graphics primitives for the intersections, we strip out the second
(last) sub-element of each element and wrap the head 'Point' around each of the resulting
elements. The Mathematica function 'Map' does this for us. (For which we can also use the
notation '/@'.)

Here, we extract the list of x-y coordinates from the indexed list.

Last /@ intsIL
7
({2, 3}, (0, 4}, {8, 0}, {0, 7}, {-, O}, {0, O}}
) . ’

The function ConstraintLines givés another useful definition for a Graphics Primitive: the
segments of the constraint lines that connect the points of inteljéectioh. ,
conLinesGP = ConstraintLines[intsIL]
({Line[{{2, 31, {0, 4))], Line(((0, 4}, (8, 03113,

7
{Line[{{2, 3}, {0, 7}}], Line[{{0, 7}, {-, 0}}13},
2
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{Line[{{0, 4}, {0, 7}}1, Linel{{0, 7}, {0, 0}}1},

7 7
{Line[{{8, 0}, {-, 0}}], Line[{{-, 0}, {0, O}}1}}
2 2

Other graphics primitives we will use are easily concocted on the spot. However, this one

requires a little programming, and so is better built into the package.

Corners of the Feasible Region

The package function FeasibleCornersIL extracts only those constraint intersections that are
feasible (satisfy all constraints), and puts them in order, which may be either clockwise or
counter-clockwise. (The corners are put in order so that the feasible region will display properly
using the "Polygon' function.)

‘ feasCornsIL = FeasibleCornersIL[mm,ops,b]:;

At first sight, it would seem better to leave extraction of the feasible intersections to the user.
If it were just a matter of making a list of feasible intersections in any order, this would be so.
However, in order to use these points in the Polygon function, with the desired result, the points
must be in either clockwise or counter-clockwise order around the perimeter. This provides a

good programming example for the user.

Graphing the Constraints
We use the show function with the graphics primitives made so far. The Polygon function is
applied to the list of xy coordinates of intersections. The list of coordinates is the list of the the

last subelements of each element of the list cornersIL.

Show [
Graphics[{GrayLevel[.5],
Polygon @ (Last /@ feasCornsIL) }],
Graphics[{PointSize[.02],
Point /@ (Last /@ intsIL)}],
Graphics[ conLinesGP ],
Graphics[{Thickness[.0075],
ConstraintLines @ feasCornsIL}],
Axes->True
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Figure 1

The Function 'ObjectiveLine'

The user can make a Graphics Primitive for the objective line by using the package function:
'ObjectiveLine'.

ObjectiveLine[{4,3}, 10]
10 5
Line[{{0, --}, {-, 0}}]
3 2

This can be used to make a movie of the feasible region and the line for the objective function,

z==_cl x + c2y, corresponding to different values of z.
It is convenient to make a single Graphics Object for the feasible region

feasRegionGO =
Graphics][{
GrayLevel[.5],
Polygon[ Last /@ feasCornsIL ],
PointSize[.02],GrayLevel [0],

Point /@ (Last /@ feasCornsIL),
conLinesGP,

Thickness[.0075],

ConstraintlLines|[feasCornslIL]
}1;

The movie is made using a Do loop:

Dol
Show|
feasRegionGoO,
Graphics[{

Thickness[.01],GraylLevel[.25],
Objectivelinelc, z]
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11,
Graphics|[
Text [
"4x+3y == "<>ToStringlz],
{4.5,4.5}
1
]I
PlotRange->{{0,8},{0,7}},
Axes->True
]I
{ (*for*) z, (*from*) 0, (*to*) 55, (*step*) 5 }

The first cell generated (z = 0) is shown at right. ]
Figure 2

When the user views this electronically, on the
computer screen, he can play the whole sequence of 4x+3y == 0
graphics cells as a movie. Controls at the bottom of

the screen allow him to adjust the speed and play in

S PN Wb Ul Oy

stop-motion etc.

Here is an array of all of the frames of the movie. (Modified slightly for clarity: tickmarks have

been eliminated, label abbreviated, and objective line darkened.)

The movie shows clearly that the maximum, feasible value of the objective function is at x=2,
and y=3. And, That this happens for z between 15 and 20. It is extremely easy for the user to zoom
in and repeat the animation for values of z between 15 and 20. we will not do that here. Instead,

we will pass on to the next stage.

Figure 3
15

i
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The Objective Function at the Corners of the Feasible Region

It is well known that all extreme solutions of a linear objective function over a convex feasible
region must occur at a vertex of the feasible region. So, another way to solve our linear
programming problem is to evaluate fhe objective function at the corners of the feasible region,
and chobse a maximal (minimal) corner. |

To find the value of the objective function at a point { x, vy }, we take the vector dot product of
{ %, v } with the vector of coefficients of the objective function. The vector of objective coefficients

is ¢ ={4, 3 }. So the value of the objective function at the point { 2, 3} is:

Dot [c, {2,3}]
17

To find the list of all objective function values at corner points, we map the Dot function onto

the list of all xy coordinates for the corner points.

Dot[c,#]& /@ (Last /@ feasCornsIL)
{17, 12, 0, 14}

At this point, we might ask the user to construct a function to find a corner that maximizes the

objective function. Here is one possible definition:

maxZXY [vecC_, cornerListIL_ ] :=

Module|[ {cornerzs},
cornerZs = Dot[vecC,#]& /@ (Last /@ cornerListIL);
Select[

{ Dot[vecC,#], # }& /@ (Last /@ cornerListIL),
#[[1]] == Max[cornerZs l&
]
1//First

maxzZXyY [c, feasCornsIL]
{17, {2, 3}}

The result of this function is a list giving both the maximum feasible value of the objective
function, and the coordinates of the corner where this maximum value is attained. It is easily used

to draw a picture:
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Show|
feasRegionGoO, (* Feasible Region *)
Graphics|({ (* Line for max z ¥*)
Thickness[.01],GraylLevel[.25],
ObjectiveLine[
C,

First[ maxZXY[c, feasCornsIL] ]
]
31,
Graphics|[{ (* Circle point with max z *)
PointSize[.025],GrayLevel[0],
Circlel#, .5]& @ Last[maxZXY[c, feasCornsIL]]

11,
Graphics| (* Text Label *)
Text [
"4x4+3y == "<>
ToString[First [maxZXY[c, feasCornsIL]]],
{4.5,4.5}

]
]I
PlotRange->{{0,8},{0,7}},
Axes->True

7 Figure 4

The displayed graph resulting
from the 'Show' command

above.

A Small Feasible Region, Away from the Origin
Here, we have a small feasible region, narrowly bound between two parallel lines. For reasons of

space, we omit most of the Mathematica code. It is mostly similar or identical to that above.



The Graph

Show[ plotViewGO, Axes->True];

The feasible region appears to
be the narrow strip between the
points. The Maximum Objective
Function is the thicker gray line
passing through the upper of
the two points. (We omit the
code that produces the Graphic
Object 'plotViewGO")

Programming the Graphics of Two-Dimensional
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. Figure 5
0.8
0
0.4
0.2
-1 -0.5 0.5 1 1.5

We can zoom in. Below is a closeup of the top of the feasible region. The objective function line is

shown passing through the maximum feasible corner point. A copy of the overall picture is in the

upper right corner.

Show[

1;

plotViewGO,
Graphics|[
Rectangle([
{0.29, 0.6950},
{0.30, 0.7095},
plotViewGO
]
] I
Axes->True,

0.71

0.7
0.6975

0.7075F
0.705¢F
0.7025F

0.695F
0.6925F
0.69*%

0.28

0.285

0

.29

0.295 0.

Figure 6

3

AxesOrigin->{0.275, 0.710},

PlotRange->{{0.275,0.300}, {0.690,0.710}}

The main figure clearly shows the relation of the objective function to the feasible region. While,

at the same time, the relation of the feasible region to the overall constraint set is clearly shown

in the inset graphic.
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A Minimization Problem, with Variation of Two Parameters
We can also display unbounded feasible regions. Here we have the feasible region for a
minimization problem. With the objective function for the minimum feasible value shown in gray.

If the user wishes to investigate the effect of

varying one more of the parameters, he may. Figure 7

Here we illustrate the result of animating 20

simultaneous changes in the first coefficient of 15

the objective function and the availablity of the 10

resource for the first constraint.

Here is the Do loop to produce the graphics.

5 10 15 20
Dol
Module[ {minz, newc, newb, frCornsIL},
newb = b;
newb[[1]] -= dx/2; (* Note the C-like '-=' ¥*)

frCornsIL = FeasibleCormersIL[mm,ops,newb];

newc = ¢ + {dx,0}; (* change cl only *)
minz = First @ minZXY[newc, frCornsIL];
Show|[

Graphics|[{

Thickness[.01],GrayLevel[.5],
ObjectiveLine [newc,minz]
31,
feasRegGO[frCornsIL],
Axes->True
]
1,
{ax, 0, 10, 0.5}

The effect is to increase the negativity of the slope of the objective function, and pull the center
constraint in the figure toward the origin. This is probably better seen than described. Here is

some of the sequence of graphics generated:
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Figure 8
20 20 20
15 15 15
10 10} 10
5 5t 5
5 10 15 20 5 10 15 20 5 10 15 20
20 20} 20
15 15 15
10 10 10
5 5 5
5 10 15 20 5 10 5 10 15 20
20 20
15 15
10 10
5 5
5 10 15 20 5 10 15 20 5 10 15 20

Again, we should emphasize that the user actually sees a sequence of graphics that he can

animate through a simple double click. The Array shown above has been made for publication on

the printed page only. (Although the user could easily make it as well.)

A Bit of Detail

Here is an example of a function from within the package that the user is expected to study and

understand. It should be empasized that this was not written as an example of the most elegant

programming possible in Mathematica. Rather it is meant to be accessible to a relatively

inexperienced undergraduate.

The purpose of this function is to prepare the list of coordinates of the corner points of the feasible

region for display using the Polygon function. If the corners are not arranged in either clockwise

or counter-clockwise order, the result will be an hour-glass sort of shape, instead of a polygon.

wrongShape
rightsShape

Graphics[ Polygon[{{0,0},{1,0},{0,1},{1,1}}1 1;
Graphics[ Polygon[{{0,0},{1,0},{1,1},{0,1}}] 1;

Show[GraphicsArray [ {wrongShape, rightShape}]]

At the right are the results of the two different Figure 9

orderings of the same four points.:
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The Function in Question
Here is the function to protect against unintended hour-glasses by ordering the indexed list of

feasible corners
PerimeterOrderIL[cornersIL_List] :=
Module[ {cornlist, openC,o0ldlist,newlist, corner},
cornlist = cornersIL;

(* Bounded? If not, put in dummy point *)
If [Not [BoundedQ[cornlist]], (
openC = OpenConstraints|[cornlist];
Print ["Feasible region appears unbounded.”];
Print ["Open constraints are ",
openC[[1]]," and ",openC[[2]] 1;
(* Insert Dummy point *)
cornlist = Appendl[
cornlist,
{openC, Infinity)}
]
)1;

oldlist = Rest[cornlist]:;
newlist = {First[cornlistl};
corner = First[cornlist];

while[oldlist != {},
corner = Select[oldlist,
(Intersection{#[[1]11,
corner[[1]1] ] != {} )&
1//First;
newlist Append|[newlist, cormer];
oldlist Complement [oldlist, {corner}]

1;

(*vRemove dummy point *)
Select[newlist, (#[[2]] =!= Infinity)&]

Explanation

The first thing done is to define a module. This provides a protected local envirionment, in which
local variables can be defined and used. The effect is equivalent to the definition of a procedure in
a language such as Pascal or C.

Next, the feasible region is checked for boundedness. The method used to sort on the corners

requires that each constraint be associated with exactly two corner points. This is not true if the
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feasible region is unbounded. In this case, a "corner at infinity" is temporarily added.

The boundedness is checked using another function defined in the package "BoundedQ", but not
reproduced here. If the answer is that the feasible region is unbounded, then another function,
also not reproduced here, provides the list of exactly which two constraints do not meet. An
element consisting of the numbers of these two constraints, "openC", and the marker "Infinity" is

then appended to the list of corner points
cornlist = Append[ cornlist, {openC,Infinity)} ]

Next, is the heart of the function. A 'While' loop is used. Corners are taken one at a time and
added to the new, ordered, list of corners. At the same time, that corner is removed from the old
list of corners. This process continues until fhere are no more corners left in the old list.

The manner in which this is done is, first, to look at any corner and ask which two constraints
intersect at that corner. Then, we look along one of the constraints to find the other corner point
involving that constraint. From that point, we look along the other constraint to find the next
corner point. We continue walking along the constraints from corner to corner, until there are no
more Corners.

The manner in which we program this in Mathematica is straghtforward: We find the element of
the indexed list of corners where the set theoretic intersection of the costraint numbers with the

current constraint number is not empty

corner = Select[oldlist,
(Intersection(#[[1]],
corner[[1]] 1 != {} )&
1//First

This corner is then appended to the new list, and removed from the old list using set
complementation.

When the list is finished, we need only remove the "point at infinity".
Select[newlist, (#[[2]] =!= Infinity)&]

We select only those elements whose second element is not Infinity. Since this is the last line of

the function, and is not followed by a semi-colon, it is the value returned by the function.
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Summary

GraphicsLP2D is really a fairly simple-minded package. It does have a bit more sophistication
than one might guess from just the surﬁmary above. For example, it performs some checking on
function arguments: It will respond properly if some arguments are given in a different order, and
it will not respond at all in many cases of incorrect arguments. It is far from unbreakable, but
study of the manner in which it performs argument checking, and extending it to more cases
provides good practice for the user.

Extension of this package to cover three dimensions would truly be a truly worthwhile, and

ambitious, user project.
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Appendix: The Complete Package Listing

(*******t*#‘*#l****t*#*****#*#********#**l*#**t#**'#***.*‘*)

(* v . ) . ,,)

(* Package . ")7
(* L )
{* GraphlP2D o *)
(* %)
(* Author: Ronald D. Notesﬁ‘né'> o *)
(* | ' " Date: Mar 10, 1994 | ' o *)

(*******#**#**‘*lt**#**‘**t*t##‘#3‘**‘#*##****t‘***i**tt***)

BeginPackage ["graphLP2D" "]

ConvertIneq::usage = "

ConvertIneqg[ lhs <= rhs (or lhs >= rhs) ] puts the\n
\tinequality ( lhs <= rhs, or lhs >= rhs) into\n \
\tstandard form e.g:\n :

\t\t\tl+2x<=5-3y == 2x+3y<=4.\n
\tThe rhs side is made positive:\n
\t\t\t 2x-3y<=-2 ==> =2x4+3y >= 2"

IntersectionsIL::usage = "

IntersectionsIL[m,b] produces an indexed list of the\n
\tpairwise solutions of the system of equat:Lons\n
A\t\t\tm. {x,¥} == b.\n -
\twhere { {i,j}, {x,¥} } represents the\n
\tintersection, {x,y}, of equations number i and j\n
\t, the ith and jth rows of matrix m.\n

IntersectionsIL[m, b, k] produces the subset of pairwise\n
\tsolutions that satisfy row k of the system m.{x,y} == b.\n
\t (Only intersections involving equation k.)\n '

IntersectionsIL[indexedList, k] produces the subset of\n
\tindexedList with integer k as one element of the index\n
\telement. (Only intersections involving equation k.)"

FeasibleCornersIL::usage = "

FeasibleCornersIL[m,ops,b] produces the indexed list of the\n
\tx~y coordinates of the corners of the feasible region, \n
\tin counter-clock-wise order. Where, ops is the list of\n
\toperations (<=, >=, or ==) relating the rows of m with\n
\tthe elements of b. The format of the output is\n
\t\t {{i,j},{x,¥}},\n '
\tindexed on rows of m."

— 95 —



CHUKYO KEIEI KENKYU

ConstraintLines::usage = "

ConstraintLines([indexedlList] constructs a list of Line graphic\n
\tprimitives from an indexed list of coordinates. The\n
\tlines are through each pair of x-y coordinates that\n
\tshare a common index.\n ‘

ConstraintLines[indexedlList,k] constructs a list of the Line\n
\tgraphic primitives, pertaining to index k, from an\n
\tindexed list of coordinates."”

ConstraintsIL::usage = "

ConstraintsIL[m, ops, b, {x_Symbol, y Symbol}] produces an\n
\tindexed list of the constraints. Where m is the\n
\tconstraint coefficient matrix, b the list of constraint\n
\tlimits, and ops the operations relating them. (LessEqual,\n
\tGreaterEqual, etc.) The last argument must be a list of\n
\ttwo symbols (used in the equations/inequalities)."

FeasibleQ::usage = "

FeasibleQ[m,ops,b, {x0,y0}] returns True if {x0,y0} is located\n
\twithin the feasible region for m. {x,y}<=b,\n
\tand false otherwise."

BoundedQ: :usage = "
BoundedQ[FeasibleCornersIL] returns True if the feasible\n
\tis bounded, and False otherwise."

ObjectiveLine::usage = "
ObjectiveLine[{cl,c2},val] makes a Line graphics primitive\n
\tthat goes from from axis to axis.\n
\tIf one of cl and c2 is 0, the line goes\n
\t from one axis to the line x=y.\n
\tMust have val>0, cl>=0, and c2>=0, (not both zero)."

Begin[" Private "]

DIM = 2; (* This package is for 2 Dimensions *)
‘ (* DIM is used to screen some fctn args *)
OPERATORS = {GreaterEqual,lessEqual,Equal};

(* * * Begin ConvertIneq Begin * k%)
(* ConvertIneq is from an original by Ed Greaves *)
ConvertIneq[ ineq [lhs_,rhs ] ] :=
Module[ {temp, const, result},
temp = Expand[ lhs - rhs ];

const = If[Head[temp] === Plus,
Select [temp, NumberQ] ,
01;
result = ineqg[temp - const, -const];
result[[1]] = (*get rid of stubborn real zeroes*)

If[result[[1l,1]]//NumberQ,
result[[1]]//Rest,
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result[[1]] 1;
If[ -const<O0,
result = Minus /@ result;
result = result /.
: {GreaterEqual -> LessEqual,
LessEqual -> GreaterEqual }
1; '

result
] .
(* * * END ConvertIneq END * * *)
(* * * Begin Intersections definitions Begin * * %)
(* . *)
(* Contains: LinSolve, IntersectionsIL’ *)
(**)
LinSolve[{ml_,m2_},{bl_,b2_}] :=
Module[{soln},
Off [LinearSolve: :nosoll; (* message off *)
soln = LinearSolve[{ ml, m2 }, { bl, b2 } ]1;
Which[
Head[soln] === List, (
On[LinearSolve: :nosol];
Return[soln] (* solution *)
)I
Head[soln] == LinearSolve, (
On[LinearSolve: :nosol];
Return[None]
)l
True, (
On|[LinearSolve: :nosol];
Print["LinSolve: Failed"];
Return[$Failed]
)
]
1
(**)

IntersectionsIL[ m List, b List ] :=
Module[{ nR, sols },
' nR = Length[m];
gols =
Table|
{ {1,373},
LinSolve{{ m[{i]l]l, m[[j]] },
{ bI[[i1]1, bILI3]1] }
]
}I
{i,1,nRr-1},
{3,i+1,nR}
1//Flatten[#,1]&;
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(* Select only cases where intersection found *)
Select([sols, (Head[#[[2]]]===List)& ]

1(* args shape OK? *) /; (Length[m] == Length[b] &&
Length[Dimensions[m]] == 2 &&
Length[Dimensions[b]] == 1 )
(**)
IntersectionsIL[listIL List, k_Integer ] :=
Select |
1listIL,
MemberQ[ #[[11]1, k l&
]
(**)
IntersectionsIL[ m List, b _List, k_Integer 1 :=
" IntersectionsIL[ '
IntersectionsIL[m,bl},
k
]
(**) (* Mistaken inclusion of ops *)
IntersectionsIL[ m List, b _List, ops_List ] :=
IntersectionsIL[m, b]

(* * * END Intersections definitions END * k%)

(* * * BEGIN Constraints definitions BEGIN * * *)
(* *)

(* Contains: ConstraintLines, ConstraintsIL *)

(**)
ConstraintLines[listIl_List, k_Integer] :=
Line /@
Partition|
Last /@ IntersectionsIL[listIL,k],
2,1

(**)
ConstraintLines[listIL List] :=
Table[
Line /@
Partition[#,2,1]1&[
Last /@ Select[ listIL, MemberQ[#[[1]], k]l& ]
1.
{k, Length[Union[Flatten[First /@ listIL]]] }
]
(**)
ConstraintsIL{ m List, ops_List, b_List,
{x_Symbol, y_ Symbol} ] :=
Module[{n},
n = Length[m];
Join|
Table[
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{ i,

(m[[i]].{x,¥}) ~ ops[[il] ~ b[I[i]]
},
{i,1,n}

1,

{
{ n+l, x >=
{ n+2, y >=

o O
(SR
-

1

1 /; (* args OK? *) (
(Length[m] == Lengthl[ops] == Length[b]) &&
And @@ ( MemberQ[OPERATORS, #]1& /@ ops ) )
(**) )
ConstraintsIL[ m List, b _List, ops_List,
{x_Symbol, y_Symbol} ] :=

ConstraintsIL[ m, ops, b, {x,y¥} 1]

(* * * END Constraints definitions END * ok %)

(* * * BEGIN Feasible Region definitions BEGIN * k&)

(* *)
(* Contains: BoundedQ, OpenConstraints, *)
(* FeasibleCornersIL, FeasibleQ, *)
(* PerimeterOrderIL *)

(**)
BoundedQ[feasCornsIL List] :=
Module[ {cNbrs, occursPerC}, .
cNbrs = (First /@ feasCornsIL)//Flatten;
occursPerC = Length /@ (Cases|[cNbrs,#]& /@ cNbrs):;
FreeQloccursPerC, 1] &&
FreeQ[feasCornsIL, Infinity]
]
(**)
OpenConstraints[feasCornsIL List] :=
Module[{cNbrs, allC, occursPerC, openC},
allC = (First /@ feasCormsIL)//Flatten;
cNbrs = allC//Union//Sort;
occursPerC =
Length /@ (Cases[allC,#]& /@ cNbrs);
openC =
Select [
cNbrs,
(
occursgPerC| [
Position[cNbrs, #]//First
11 == {1}
)&
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1;
If[LengthlopenC] > 2 ||
Length[openC] == 1, (
(* Then *)

Print["OpenConstraints: Unexpected number of unpaired

constraints"];
Print ["Constraints no. list is: ",openC];
), (* Else *) (
openC
)]

(**)
FeasibleCornersIL[m List, ops_List, b List]
Module[ {x,y,constraints,ptsIL},

constraints = (* automatically includes axes *)

Last /@ ConstraintsIL[ m, ops, b, {x,v} 1;

ptsIL IntersectionsIL{m,b];

Select [ptsIL,

(And @@
(constraints /. {x->#[[2,1]],
v->#[1[2,211} )

ptsIL

)&

If[ptsIL == {},
(* Then Not Feasible *)
Print ["FeasibleCornerslIL: No Feasible Region Exists"];

Returni[Null] (* **BREAK: RETURN[Null]** *)
1;

(* Return Ordered Feasible Cormers *)
ptsIL //PerimeterOrderIL

] /7; (* args OK? *) (
(Length[m] == Lengthl[ops] == Length[b]) &&
And @@ ( MemberQ[OPERATORS, #l& /@ ops ) )
(**)
FeasibleCornersIL[m , b, ops_]
FeasibleCornersIL[m,ops, bl

(**)
FeasibleQ[m List, ops_List, b_List,
{ x0_?NumberQ, y0_?NumberQ } ] :=

Module[{x, y, comnstraints},

constraints = (* inequalitiesIL will include axes *)
Last /@ inequalitysIL[ m, ops, b, {x,v} 1:

(* Are ALL constraints satisfied? Return: *)

— 100 —



Programming the Graphics of Two-Dimensional
LP Problems in Management Science

And @@ ( constraints /. {x->x0,y->y0} )

1 /; (* args OR? *) (
(Length[m] == Length[ops] == Length[b]) &&
And @@ ( MemberQ[OPERATORS, #]& /@ ops ) )

(**)
PerimeterOrderIL[cornersIl, List] :=

Module[ {cornlist, openC,oldlist,newlist, corner},
cornlist = cornersIL;

(* Bounded? If not, put in dummy point ¥*)
If [Not [BoundedQ[cornlistl], (
openC = OpenConstraints[cornlist];
Print ["Feasible region appears unbounded."]:;
Print ["Open constraints are ",
openC[[1]]," and ",openC[[2]] 1;
(* Insert Dummy point *)
cornlist = Append[
cornlist,
{openC, Infinity}

)1;

oldlist = Rest[cornlist];
newlist = {First[cornlist]l};
corner = First[cornlist];

While[oldlist != {},

corner = Select[oldlist,

(Intersection[#[[1]],
corner[[1]] 1 != {} )&
1//First;

newlist = Append[newlist, corner]:;

oldlist = Complement [oldlist, {corner}]
1;

(* Remove dummy point *)
Select[newlist, (#[[2]] =!= Infinity)&]

1 /; Dimensions[First[cornersIL]] == {DIM,DIM}
(* * * END Feasible Region definitions END * k k)
(* * * BEGIN Objectiveline definitions BEGIN * % %)
(* *)
(* Contains: ObjectivelLine *)

(* Usual case, cl and c2 > 0 ¥*)
(**)
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ObjectiveLine[{ cl_?(#>0&), c2_2(#>0&) }, val_?(#>=0&) ] :=
Line[{ {0, val/c2}, {val/cl, 0} }1]

(* cl is 0 *)

(**)

ObjectiveLinel[{ cl1_? (#==0&), c2_?(#>0&) }, val_2?(#>0&) ] :
Line[{ {0, wval/c2}, {val/c2, wval/c2} }]

(* c2 is 0 *)

(**)

ObjectiveLine[{ cl_?(#>0&), c2_7?(#==0&) }, val_?(#>0&) 1 :=
Line[{ {val/cl, val/cl}, {val/cl, 0} }1

(* * * END Objectiveline definitions END * % %)
End[]
Protect [IntersectionsIL, ConstraintLines,

FeasibleCornersIL, FeasibleQ,

BoundedQ, ObjectiveLine,

ConvertIneq 1:;

EndPackage([]

— 102 —



